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ABSTRACT

The common goal for biological research is to develop models for the biological processes we

seek to understand. Such models, in the form of biochemical pathway networks which describe

the physical interactions between a living cell’s genes, transcripts, proteins, and metabolites

(”Omics”), accumulate in different repositories for several model organisms as well as non-

model organisms. This thesis presents a set of integrated statistical bioinformatics tools that

address key problems in integrating large-scale Omics datasets with pathway network models.

A hardware accelerated non-parametric Omics mining method (Monte Carlo on the GPU)

allows faster screening of custom test statistics and functions. A software platform for mining

pathway databases (PathwayAccess) confers knowledge integration and comparison. Omics

and pathway mining are combined for a novel method for statistically discriminating func-

tionally meaningful subnetworks for their interaction with lists of entities mined from Omics

data, so that software can intelligently mine large and complex pathway databases to answer a

wide variety of questions and generate hypotheses (Discriminating Omics Response Groups in

Pathways). The method, called PathwayFlow, can discriminate pathways, reactions, metabo-

lite classes, or any other biological entity grouping (Response Groups), and automatically

accounts for connectivity-caused biases in the pathway network. It also differentiates between

regulators (or inputs) and regulatees (or outputs) for a given Query List of Omics entities.

It is applied to three real datasets: a simple E. coli gene expression dataset which validates

the method, a more complex Vitis gene expression dataset which complements functional

enrichment analysis (Grapevine’s Response to Short Days), and an ultra-high throughput re-

sequencing dataset for assessing genetic differences between two wine grape varieties (DNA

Sequencing Appendix).
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1. INTRODUCTION

Omics refers to the quantification of the entirety of something in a living cell. Whether it

is genomics, transcriptomics, proteomics, metabolomics, or other -omics, most studies involve

four general steps:

1. Design the experiment. This includes a careful consideration of the objectives of the

study and plans for sampling.

2. Generate the data. This is when the experiment is run; samples are generated/collected,

and biotechnologies such as sequencing or microarrays are used.

3. Mine the data. This is the first directly computational step (although design should

consider statistical requirements for sampling), where data points collected from the

biotechnologies are pre-processed and relavent entities (ie differentially expressed genes)

are mined from the full population.

4. Interpret the results. This is usually the most intellectually creative and challenging

step. Given lists mined from the data, scientists must reconcile them with existing

biological knowledge as well as hypothesize new models for the biological processes that

were activated or perturbed by the experimental treatments.

The purpose of this dissertation is to communicate my contribution to our ability to con-

duct the final two general steps: Data Mining and Results Interpretation, specifically in the

metabolic pathway context. These steps are closely linked, not only because they are computa-

tional, but because data mining results directly affect interpretation and hypothesis generation;

During the data mining step, the interpretation step must be considered so that the desired

behaviors are mined and during the interpretation step, one must understand how the omics
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lists were mined from the data. Figure 1.1 illustrates the relevant research processes and how

they relate to one another as well as their focus in the following chapters.

Figure 1.1 Research processes and the chapters which discuss them.

This document is organized into four chapters, each a manuscript that is either already

published in a peer reviewed journal or will be submitted to one. The first chapter, Monte

Carlo Randomization Tests for Large-scale Abundance Datasets on the GPU (Van Hemert

and Dickerson (2010a), Chapter 2 on page 5), was published in Computational Methods and

Programs in Biomedicine in June 2010 and discusses the challenge of mining lists of entities

from Omics data and presents a hardware-accelerated Monte Carlo based method for doing

so. It is an important component to the general work because mining lists from Omics data is
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directly related to interpretation and pertains to the data mining step.

The second chapter, PathwayAccess: CellDesigner Plugins for Pathway Databases (Van Hemert

and Dickerson (2010b), Chapter 3 on page 20) was published in Bioinformatics in July, 2010

and presented at the 2010 PathwayTools Workshop at the Stanford Research Institute and dis-

cusses the challenges of curating and integrating different pathway network model repositories

and presents a software for doing so. It is important because an understanding of the existing

pathway databases is necessary for processing such data and knowledge and pertains to the

interpretation step, specifically the pathway context.

The third chapter, Discriminating Omics Response Groups in Biochemical Pathway Net-

works (to be submitted, Chapter 4 on page 37), presents a novel method for statistically

modeling and discriminating subnetworks from a pathway network using sound hypothesis

tests. Inputs include a list of Omics entities (i.e. differentially expressed genes), a metabolic

pathway network on which to base interpretation, and a preset definition of response groups to

be discriminated; response groups can be any delineation of metabolic entities in the network

such as pathways, reactions, or chemical compound classes. Current implementations of the

tool only support pathway or reaction response groups. The output is a visualization of the hy-

pothesis tests used to discriminate significant response groups along with lists of said response

groups. The method is validated with a web tool use case for analyzing differentially expressed

E. coli genes in the EcoCyc pathway network and a novel model for E. coli response to Lipid

A deprivation is posited. This chapter pertains to the interpretation step and is the main

computational contribution of this work by integrating concepts from the first two chapters.

The fourth chapter, Expression Platform Integration and Insights into the Grapevine’s Re-

sponse to Short Winter Days (to be submitted, Chapter 5 on page 63), focuses on grapevine

data and includes two parts: First, a technical gene expression integration study with a novel

method for exon-specific quantification and verified by a comparison to RNAseq data. This sec-

tion is a key component to the work because understanding the relationships between different

biotechnologies is necessary for processing Omics data. It also uses some of the same compu-

tational theory as the third chapter, but for modeling relationships between exons and the mi-
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croarray probes that measure them instead of pathway networks. Second, a novel multivariate

data mining effort to mine time-dependent activity from gene expression in the paradormant

buds of Vitis riparia along with a functional analysis using conventional category enrichment

tests and our novel pathway flow modelling method described in the third chapter. This section

is also important because it applies a novel mining method to real data and then complements

the flow analysis method in the third chapter with a traditional category enrichment analysis

for the resulting gene lists to generate new hypotheses for the grapevine’s response to shorter

photoperiods. This chapter discusses all four general Omics steps and uses novel methods for

the third and fourth steps.

Two appendices include content from other bioinformatic work conducted during this time.

Much of the work presented in the appendices was done at the University of Verona under the

supervision of Dr. Mario Pezzotti and funded by a student travel stipend awarded by the Grape

Research Collaboration Network. Appendix A on page 97 discusses challenges and solutions for

processing ultra-high throughput data from Next-Generation Sequencing projects. This section

is highly relevant to the main document because it shows exposure and understanding of new

biotechnologies and the computational methods that are being developed to process their data.

Appendix B on page 114 discusses solutions for curating the results and integrating them with

functional annotation, which is a non-trivial task when working with multiple collaborators at

different locations and different sets of functional annotation.
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2. MONTE CARLO RANDOMIZATION TESTS FOR LARGE-SCALE

ABUNDANCE DATASETS ON THE GPU

A paper published in Computational Methods and Programs in Biomedicine

John L. Van Hemert and Julie A. Dickerson

Abstract

Statistical tests are often performed to discover which experimental variables are react-

ing to specific treatments. Time-series statistical models usually require the researcher to

make assumptions with respect to the distribution of measured responses which may not

hold. Randomization tests can be applied to data in order to generate null distributions

non-parametrically. However, large numbers of randomizations are required for the precise

p-values needed to control false discovery rates. When testing tens of thousands of variables

(genes, chemical compounds, or otherwise), significant q-value cutoffs can be extremely small

(on the order of 10−5 to 10−8). This requires high-precision p-values, which in turn require

large numbers of randomizations. The NVIDIA® Compute Unified Device Architecture®

(CUDA®) 1 platform for General Programming on the Graphics Processing Unit (GPGPU)

was used to implement an application which performs high-precision randomization tests via

Monte Carlo sampling for quickly screening custom test statistics for experiments with large

numbers of variables, such as microarrays, Next-Generation sequencing read counts, chromoto-

graphical signals, or other abundance measurements. The software has been shown to achieve

up to more than 12 fold speedup on a Graphics Processing Unit(GPU) when compared to a

1NVIDIA
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powerful Central Processing Unit(CPU). The main limitation is concurrent random access of

shared memory on the GPU. The software is available from the authors.

Introduction

Statistical models provide a detailed analysis of the extremity of observed data and are

always based on some number of assumptions. These assumptions usually consider the rela-

tionships between the test subjects and treatments as well as the nature in which a subject

responds to a treatment. Randomization tests provide a non-parametric measure of the ex-

tremity of an observation which does not require these assumptions. While some methods

such as Knijnenburg et al. (2009) attempt to approximate sampling distribution behavior in

the tails by fitting curves to simple permutation sets, exact permutation is the only way to be

sure of tail behavior for complex statistics.

Time series experiments violate the usual assumption of independence in statistical testing

because samples from different time points are inherently related through time. One method

which does not require independence is the generation of a null distribution by reordering

data labels in all possible permutations and calculating the value of a test statistic for each

permutation. The test statistic calculated from the observed abundance profile can then be

tested under the null hypothesis, by comparing it to the generated null distribution. See

Figure 2.1 for an illustration of the general randomization test procedure. A test statistic

can be any meaningful function of the abundance profile of a variable. While a student’s T

statistic is an example of a simple parametric test statistic, other functions can be used with

this application, such as comparing different distance metrics between treatments through

time. When the number of samples over the time points is prohibitively large, a Monte Carlo

simulation simply samples randomly from the population of all possible permutations in order

to estimate the true null distribution. Gene expression datasets created using microarray

or Next-Generation technology are prime candidates for our method because these datasets

contain tens to hundreds of observation on thousands to tens of thousands of variables.

Generating very large numbers of permutations is essential for multiple testing correction.
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Consider an experiment with 20,000 abundance profiles. Sampling 100 random permutations

for each of the 20,000 variables may be computationally convenient. However, the significance

cutoff for rejecting the null hypothesis for a variable must be corrected for multiple tests (there

are actually 20,000 tests for this single experiment). Without such correction, a Type I Error

Rate of 0.05 would produce 20, 000 ∗ 0.05 = 1, 000 false positives on average. The simplest

method, known as Bonferroni correction (Holm, 1979), divides the desired false discovery rate

by the number of tests. If the FDR is 0.05 (a common selection), then the significance cutoff

would be 0.05/20, 000 = 0.0000025. Clearly, the precision of sampling only 100 permutations

for an abundance profile is inadequate. Sampling 100 random permutation statistics results

in p-values of 0.0, 0.01, 0.02, up to 1.0; the smallest non-zero p-value is 0.01, which is much

larger than the cutoff value. These examples show that there is a granularity associated with

permutation statistics which limits the sensitivity of the overall test. For our example with

20,000 abundance profiles permuted 100 times, there is a granularity of 1/100 = 0.01, so

profiles with true exact permutation p-values between 0.0000025 (the cutoff value) and 0.01

would not be considered interesting, because they would usually yield zero random statistics

more extreme than their corresponding observed statistics. On average, sampling just 100

permutations would yield p-values of 0.0 and declare them as interesting, resulting in false

positives. For this example, a granularity of 1/107 = 10−7 would be necessary to discriminate

between true random statistics of 0.0000025 and 0.0000026; false Discovery Rate would not

be correctly controlled with less than 107 permutations for each variable. Alarmingly, under

a null hypothesis with a uniform distribution of p-values, an experiment with 20,000 variables

would be expected to produce (0.01− .0000025)∗20, 000 = 200 unintended significant p-values.

Permuting so many abundance profiles so many times each can be computationally pro-

hibitive. Fortunately, the process is parallelizable on a graphics processing unit (GPU). GPUs

are designed to quickly update information on pixel displays in parallel. GPUs are usually

able to carry out specific hardware-tuned calculations meant for graphics display. NVIDIA’s

CUDA platform provides a C-like programming language and compiler enabling general pro-

gramming of standard and user-defined functions on the GPU. The following sections describe
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the algorithm and speedup results for high-precision randomization tests on a GPU. NVIDIA’s

CUDA (Corporation, 2007) platform for GPGPU was used to implement an application which

performs high-precision randomization tests via Monte Carlo sampling for quickly screening

custom test statistics for abundance data. The software achieves up to more than 12 fold

speedup on a GPU when compared to a powerful CPU.

Strengths

Conducting large numbers of randomizations for each variable enhances multiple testing

correction and improves confidence in results. The massively parallel GPU can be a powerful

tool for randomization tests on abundance data when the experiment is complex, parametric

assumptions are unmet, and high p-value precision is necessary for correct FDR control.

Weaknesses

Shared GPU memory creates a speedup bottleneck for data-dependent applications. On

a multi-cored computing architecture with shared memory, the processing speed of this type

of application depends on the architecture’s ability to allow multiple threads (cores) to access

memory simultaneously. The architecture used here is CUDA compute capability 1.0, which

limits the number of simultaneous coalesced memory accesses to 16 and does not offer large

enough on-chip cached memory for typical abundance datasets. Future plans include redesign

of the application using a more advanced architecture such as CUDA compute level 1.3 which

may provide more flexibility in coalescing memory accesses between threads. Goals of the

improved application would include all the those for the current one, plus providing a speedup

over the compared CPU architecture significantly greater than 12X.

Computational methods and theory

Data representation

Abundance experiment data are usually stored as text files in the form of delimited tables.

Rows are labeled by unique identification numbers or accessions representing different variables.
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Columns are labeled by different treatments, which may include time points at which each

variable’s abundance level is measured under different conditions and at different time points. A

cell value in the table is a real number representing abundance level for a specific variable under

a specific treatment. It is important to note that there are several methods for normalizing

raw abundance data, resulting in this tabular form. Such methods include MAS5.0, RMA, and

GCRMA (Irizarry et al., 2003b).

Data manipulation

Data preparation

The application reads a tabular abundance data file into host memory and then copies it to

device global memory, where it can be read by all threads after the randomization test kernel

launches. Before the test statistic calculation begins, another kernel transposes the input data.

The data must be transposed to allow for coalesced GPU global memory accesses (see Figure

2.2). See Corporation (2007) for details on memory access coalescence. The kernel used to

efficiently transpose the data is provided with the CUDA toolkit as an example project [7].

Permute column indices

Column index permutation is parallelized by thread block. Each data row (abundance

profile) is permuted according to permuted indices shared by each thread block. This way,

random permutation need only be conducted once for each permutation requested by the user

and not r times for each permutation requested where r is the number of data rows. This

also allows for coalesced memory accesses when permuted data rows. The kernel parallelizes

an algorithm for pseudo-random number generation similarly to the Mersenne Twister project

example included in the NVIDIA CUDA Software Development Kit (SDK) (Pdlozhnyuk, 2007).

The Mersenne Twister algorithm is a large-period bit vector-based method for pseudo-random

number generation and is ideal for implementation on the GPU. The pseudo-random numbers

generated are used to shuffle the data row indices (0 through the number of data columns

less 1) using the modern implementation of the Fisher-Yates Shuffle described in (Durstenfeld,
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1964).

Compare observed statistic with permutation-based statistic

With a shared index permutation now in hand, data row processing is parallelized by thread

within each block. Each thread in a thread block is assigned a different data row (abundance

profile). Each thread then stores its data row in permuted order according to the index

permutation. It then calculates the test statistic and compares it to the same test statistic

for the observed (un-permuted) data row (abundance profile), which has been calculated and

stored in global GPU memory previously by a different kernel. If the randomly permuted data

results in a more extreme test statistic, a count of permutations at least as extreme as the data

row is incremented. When finished, this count will be divided by the number of permutations,

resulting in a p-value which approaches an exact limit as the number of permutations grows.

Note that the meaning of ”more extreme” depends on the meaning of the test statistic. For

example, some test statistics may require a comparison of the observation’s and permutation’s

distance from zero, rather than a simple comparison of the observation and permutation test

statistics. See the pseudocode for the thread kernel in Algorithm 1.

Output

When the permutations are complete for all variables, the count of randomizations at least

as extreme as each variable is divided by the number permutations executed for each variable

and written to a data file as p-values. These p-values can then be quickly plotted in a histogram

or other diagnostics in other software. If the p-values do not invalidate the test statistic, they

can then be converted to FDR-controlling statistics such as q-values (Storey, 2003; Storey and

Tibshirani, 2003; Storey et al., 2004), and used to create lists of interesting variables for further

biological analysis.
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input : input data matrix location in device memory

input : scratch work area location in device memory

input : result location in device memory

input : number of rows,columns,permutations

output: a count for each row in the data matrix. these represent the number of

randomly permuted test statistics that were more extreme than the test

statistic observed for each respective row

forall permutations do in parallel by thread block1

initialize ordered column indices in shared block memory, S;2

initialize random column indices in shared block memory, R;3

forall columns do in parallel by thread within each block4

store random column index in R;5

end6

one thread in each block shuffle S according to R;7

foreach row i do in parallel by thread within each block8

permute row i according to S;9

calculate test statistic for permuted row i;10

if random permuted test statistic more extreme than observed then11

increment count for i;12

end13

end14

end15

Algorithm 1: Randomization test CUDA kernel
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Test statistic functions

Any function of a data row can be used as a test statistic. Typical functions are usually

measures of distance or similarity between treatment groups. These measures are then com-

pared similarly to the more restricted contrasts approach in Analysis of Variance. A set of

pre-coded test statistics for analyzing two- or three-factor experiments is provided in source

code for custom applications, including comparisons of distance metrics such as Canberra dis-

tance and Euclidean distance as well as comparisons of similarity measures such as Pearson,

Spearman, or Kendall correlation. Equation 2.1 illustrates the use of Euclidean distance for

a complex three-factor experiment. xijk is the abundance measured under the ith treatment

for the first factor, the jth treatment for the second factor, and the kth treatment for the

third factor. Here, the statistic T is essentially a measurement of the interaction between the

first and second factors, in the Euclidean space of the third factor. More complex functions

can be written into the source code in the well-labeled statistic function section for custom

applications, providing test flexibility and complexity scalability.

TEucDist =

√∑
k

(x11k − x12k)2 −
√∑

k

(x21k − x22k)2 (2.1)

Samples of typical program runs

Testing for speedup and correctness was conducted using simulated data as input. An

R script (R Development Core Team, 2010) was written to simulate preprocessed abundance

datasets of comparable size to 3-factor experiments found on PlexDB.org (Shen et al., 2005).

To test for correctness, a linear model was used to simulate variable behavior through time in

two factors. Equation 2.2 describes the linear model. One variable out of the 100 simulated

was randomly selected to exhibit an interaction effect.

yijk = µ+ αi + βj + (αiβj) + γk + εijk (2.2)

where
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µ = The mean abundance for all measurements

αi = the effect of the first factor’s ith level

βj = the effect of the second factor’s jth level

γk = the effect of the third factor’s kth level (the kth time point)

(αiβj) = the effect of the interaction between αi and βj

εijk ∼ N(0, 1)(Normally distributed random noise)

The model in Equation 2.2 was used to simulate 100 variables. These 100 variables were

then analyzed using the GPU application with the statistic generated by Equation 2.1 permuted

1000 times for each variable. The same was done using an R script and the resulting p-values

compared. The results were nearly identical, showing correct results from the GPU application.

See Figure 2.3.

For speedup profiling, datasets were generated containing different population sizes (data

matrix rows) and treatment population sizes (data matrix columns). The number of permuta-

tions was also adjusted for testing. A much simpler model for simulation was used for these test

to provide easy flexibility in the changing parameters (numbers of data matrix rows, columns,

and permutations). Each measurement in the data matrix is simply a pseudo-random number

sampled from a Uniform distribution between 0 and 1. Though this model is not realistic, it

quickly generates a data matrix of any size for speedup profiling.

Compute time and memory usage for this application are affected by data size and the

number of permutations requested. Speedup and GPU memory usage were profiled when

increasing each of three values: The number of input data columns (treatments), the number

of input data rows (variables), and the number of permutations generated.

Figure 2.4 shows the profiling results when increasing only the number of data columns

in input data. Speedup of over 10 is achieved except for two cases. It is unclear why 800

and 1,000 data columns consistently produced small speedup. These slow-downs occurred for

many different randomly simulated datasets of different sizes. CUDA runtime register and

memory usage details may hide the cause for this (see Corporation (2007)). Figures 2.5 and
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2.6 show profiling results when increasing the number of data rows and the number of requested

permutations, respectively.

Specifications

This application uses both shared and global GPU memory such that usage is well within

the bounds of most NVIDIA CUDA-supporting hardware. Concurrent memory accesses are

coalesced to maximize random access bandwidth. Testing and speedup calculation was con-

ducted using an Intel(R) Core(TM)2 CPU X6800 at 2.93GHz with 4096 KB cache and an

NVIDIA GeForce 8800 Ultra GPU with 16 multiprocessors at 1.51 GHz with 768 MB global

memory (804,585,472 bytes) and 16 KB shared memory per thread block (16,384 bytes).

Hardware requirements

1. NVIDIA CUDA graphics card with Compute Capability 1.0 or higher.

Software requirements

1. NVIDIA CUDA driver for the selected

graphics card (available from NVIDIA.com).

2. NVIDIA SDK (available from NVIDIA.com).

Availability: This software source is available for on a Subversion (SVN) server at

https://subversion.vrac.iastate.edu/Subversion/RandTestGPU/svn/RandTestGPU/.

Note that it requires the NVIDIA SDK mentioned above. Support is available upon request.

Funding: This project is funded by the National Science Foundation Plant Genome Re-

search, DBI 0604755.
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Figure 2.1 Each abundance profile is reordered (permuted) a large num-

ber of times and then each permutation is used to calculate a

random statistic which is then compared to the observed statis-

tic. The right-hand block represents the set of permutations

generated and processed for the first data row in the left-hand

block.
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(a) Tabular structure commonly representing preprocessed
abundance data stored in a typical two-dimensional matrix.
This is the un-transposed input data.

(b) The same 3x10
data table after
transposition.

Figure 2.2 Transposing abundance data for column-major coalesced mem-

ory accesses. Note that as the threads walk along their respec-

tive variables, they are accessing contiguous cells in memory in

(b) and not in (a). Coalesced accesses require that the threads

access contiguous cells in memory simultaneously.(Corporation,

2007)
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Figure 2.3 Negligible differences in p-values were observed due to word

size and randomization differences between the GPU and R

approaches.
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Figure 2.4 Wall clock time and speedup (top), shared memory usage (bot-

tom left), and global device memory usage (bottom right)

when increasing the number of input data columns (treatments

and/or replications). Speedup of 6-10X is achieved while oper-

ating well within memory limitations.

Figure 2.5 Wall clock time and speedup (left), and global device memory

usage (right) when increasing the number of input data rows

(variables). Speedup of 10-12X is achieved while operating well

within memory limitations. Shared memory usage does not

change when changing only the number of input data rows.
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Figure 2.6 Wall clock time and speedup when increasing only the number

of permutations requested. Speedup of 12 is achieved. Memory

usage does not change when changing only the number permu-

tations.
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3. PATHWAYACCESS: CELLDESIGNER PLUGINS FOR PATHWAY

DATABASES

A paper published in Bioinformatics

John L. Van Hemert and Julie A. Dickerson

Abstract

Summary:

CellDesigner provides a user-friendly interface for graphical biochemical pathway descrip-

tion. Many pathway databases are not directly exportable to CellDesigner models. Path-

wayAccess is an extensible suite of CellDesigner plugins which connect CellDesigner directly

to pathway databases using respective Java application programming interfaces (API’s). The

process is streamlined for creating new PathwayAccess plugins for specific pathway databases.

Three PathwayAccess plugins, MetNetAccess, BioCycAccess, and ReactomeAccess, directly

connect CellDesigner to the pathway databases MetNetDB, BioCyc, and Reactome. Pathway-

Access plugins enable CellDesigner users to expose pathway data to analytical CellDesigner

functions, curate their pathway databases, and visually integrate pathway data from different

databases using standard Systems Biology Markup Language (SBML) and Systems Biology

Graphical Notation (SBGN).

Availability:

Implemented in Java, PathwayAccess plugins run with CellDesigner version 4.0.1 and were

tested on Ubuntu Linux, Windows XP and 7, and MacOSX. Source code, binaries, documen-
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tation, and video walkthroughs are freely available at

http://vrac.iastate.edu/~jlv.

Introduction

CellDesigner (Funahashi et al., 2008) is a tool for graphically building biochemical pathway

models which integrate model representation by Systems Biology Markup Language (SBML)

(Hucka et al., 2003) with graphical representation by Systems Biology Graphical Notation

(SBGN) (Le Novere et al., 2009). There exist many databases providing Application Program-

ming Interface (API) libraries enabling programmatic queries. These API libraries include

many biologically meaningful objects which carry out intuitive functions. For example, a

Pathway object can report the set of Reaction objects it contains, a Protein Complex object

can report the Monomer objects which contsruct it, and a Metabolite object might report its

SMILES and InChi codes. The problem is that a Pathway object in one API is not the same as

a Pathway object in the API of a different database; The same biological concept is represented

using independently developed in-silico representations, preventing any single application from

communicating and integrating across databases.

Functionality

PathwayAccess plugins directly interact with pathway databases so that the user can down-

load one or more pathways to a CellDesigner model and upload (or commit) a CellDesigner

model to a database. Figure 3.1 shows a dataflow diagram for typical use of the PathwayAccess

plugins.

The PathwayAccess plugin framework confers three major benefits, depending on whether

individual database API’s support data retrieval and modification. Firstly, the plugins make

pathways stored in remote databases available to the powerful modeling and simulation func-

tionality already provided by CellDesigner. Secondly, SBGN implemented by CellDesigner

provides a standard representation for biologists to curate pathway databases; the user can

create a pathway model and commit it to the database of his choice. A user can also download

http://vrac.iastate.edu/~jlv
http://vrac.iastate.edu/~jlv
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Figure 3.1 Dataflow for PathwayAccess plugins. PathwayAccess plugins

use respective APIs to communicate with different pathway

databases and integrate data in CellDesigner. As indicated

by arrows, depending on functionality supported by the data-

source, dataflow is uni- or bi-directional.

a pathway model from a database, edit it, and commit it back to the database, either replac-

ing the original pathway or creating a different version. Thirdly, CellDesigner can be effective

in visually comparing and integrating pathway data from one or many different databases;

metabolic networks can be downloaded directly into CellDesigner and integrated into custom

super-pathways. CellDesigner can export pathways into files for loading into other software

such as Cytoscape (Shannon et al., 2003), where SBGN is an ancilliary feature to network

analysis functions.

Since CellDesigner and most datasources’ user interfaces provide good automatic layouts,

layouts are left to the datasources and CellDesigner independently.

Pathway Integration Across Databases

When PathwayAccess plugins download pathways, they are integrated with the growing

model in memory. CellDesigner is suited to support integration because it uses the XML-based

SBML data model not only for file storage, but also for objects in memory– ideal for represent-

ing annotations integrated from different sources. Among other annotations, PathwayAccess

stores synonyms this way, enabling it to match integrated objects in the same subcellular

compartment that may be named differently across databases. To prevent duplicate reactions

in integrated pathways, a reaction hashing algorithm calculates a unique integer for every

combination of reaction substrates, products, and catalysts (see Additional Material). Each
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PathwayAccess plugin has a unique, but editable highlight color, which can be used to color

the model objects downloaded using that plugin. Objects from multiple databases are colored

by mixing the colors of the plugins that downloaded them.

Creating New PathwayAccess Plugins

The PathwayAccess framework includes a core library plus one or more independent plug-

ins. A plugin developer can easily create a new CellDesigner plugin which communicates with

any pathway database providing a Java API. Simply create a new CellDesigner plugin object

using the PathwayAccess library and define a set of simple database query operations, depend-

ing on whether the plugin will support download and/or saving a model to the database. To

create a PathwayAccess plugin which downloads a pathway, define 18 simple functions such

as get the synonyms of an object (pathway, metabolite, gene, etc). To design a commit fea-

ture, define nine simple functions such as add substrates to a reaction in the database. With

these simple operations defined for communicating with a database, PathwayAccess handles all

interaction both with CellDesigner and the database, similarly to Cytoscape’s Data Integra-

tion Request For Comments (Killcoyne and Pico, 2009), and provides a way to enrich objects

beyond the annotation used for integration.

Examples

Three PathwayAccess plugins, MetNetAccess, BioCycAccess, and ReactomeAccess were

created. In addition to representing biological objects differently, each uses a different com-

munication protocol: SQL, Sockets, and Web Services, respectively.

BioCycAccess: Download and Commit to a PGDB. BioCyc databases are in-

dividually deployed for specific organisms and purposes (Karp (2005); Karp et al. (2005),

http://www.biocyc.org). BioCycAccess uses JavaCycO, our new library wrapped around

the JavaCyc API (Mueller et al., 2005; Krummenacker et al., 2005), running in client mode to

connect to a BioCyc Pathway Genome Database (PGDB) that is running JavaCycO in server

mode. It supports both downloading and committing pathways.

http://www.biocyc.org
http://www.biocyc.org
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ReactomeAccess: Download from Reactome. Reactome is a large repository for

pathways (Vastrik et al., 2009). ReactomeAccess supports downloading pathways from Reac-

tome directly into CellDesigner models via an API wrapped around Reactome’s Web Services.

MetNetAccess: Download and Commit to MetNet. MetNetAccess provides CellDe-

signer access to the pathway database MetNetDB using MetNetAPI (Sucaet and Wurtele,

2010), which is wrapped around SQL queries. It supports both downloading and committing

pathways. MetNetDB is an integrated pathway database that currently includes Arabidopsis

thaliana, yeast, soybean, and the grapevine. MetNetAccess has been used to curate many

pathways for different organisms in MetNetDB (Wurtele et al., 2007). MetNet allows public

downloading of data, but only registered curators may modify data in MetNetDB.

Impact

The PathwayAccess suite of CellDesigner plugins is a powerful tool for researchers who

work with metabolic pathway data and wish to take advantage of graphical and computational

CellDesigner features. By directly accessing and publishing to pathway databases, decentral-

ized pathway integration and comparison is made possible over simply saving and loading

SBML files. While three PathwayAccess plugins have been released, the practical scope of the

PathwayAccess library is as wide as the number of databases to which CellDesigner can connect

because communication requires a Java API. MetNetAccess, BioCycAccess, ReactomeAccess

and future PathwayAccess plugins enable CellDesigner users to expose pathway data to analyt-

ical CellDesigner functions as well as visually integrate and curate pathway data from different

databases using standard SBGN– something which has been previously prevented by disparate

in-silico representations of biological objects.

Discussion of Technical Solutions

The following sections were included as as supplementary technical description of this work.
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Importing and integrating pathways

PathwayAccess effectively communicates with pathway databases to integrate pathway

models in CellDesigner. The main challenge of integration is preventing redundant objects–

both species and reactions.

Preventing duplicate species

During an import, there are two sides to our solution: On the database side, a plugin must

be able to retrieve all synonyms of a generic pathway object that is to become a CellDesigner

species. The PathwayAccessPlugin abstract class requires all extending subclasses (which are

the specific plugins, such as BioCycAccess) implement a function that retrieves all synonyms

from its database for a given generic pathway object. If the database does not support syn-

onyms, the plugin should at least return a list where the single member is the name of the

generic object.

On the CellDesginer side, imported species must maintain a list of synonyms that is per-

sistent through file saves. For this we designed a simple XML schema that is inserted into

the CellDesigner Species Notes, which are seen on the botton right corner of the CellDesigner

screen when a species is selected (see procedure AddAnnotation in Section 3 of this document).

Using XML this way confers several benefits: 1) PathwayAccess annotations are easily parsed

using the libSBML library, which is the core of CellDesigner, 2) CellDesigner models are saved

in XML format by default, so the XML annotations fit nicely within these saved files and

are persistent, and 3) our schema is simple enough that the PathwayAccess annotations are

human-readable 4) PathwayAccess annotation remains attached to species object in CellDe-

signer and SBML. There are two issues, however: 1) The SBML specification does not allow

custom XML be added to the Notes field of objects, and 2) if a user adds other text to the

Notes field of an object, PathwayAccess is unable to parse the XML. Despite these, issues,

PathwayAccess plugins do perform their goals in CellDesigner as along as the user does not

add text to the Notes fields of objects or mind seeing SBML warnings during model saves and

loads. Also note that PathwayAccess considers object IDs and names specific to databases to
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be synonyms as well, and IDs are always first searched in the existing model to find the same

ID from the same database without searching synonyms.

Before a pathway is imported to a CellDesigner model, a dictionary of synoyms mapped to

species objects is built from all existing species in the model, and used to look up speces by

synonym (see procedure ImportPathway in Section 3 of this document).

Preventing duplicate reactions

Even if duplicate species are created, duplicate reactions can easily appear when integrating

overlapping pathways. Our solution represents the parts of a reaction (inputs and outputs)

as a string and converts that string to a unique integer using Java’s hash code function for

strings (see procedure ReactionHash in Section 3 of this document). The key is that we

can build complete CellDesigner reactions in memory before adding them to the model on

the screen. This way, we can build each imported reaction in memory, where its inputs and

outputs (reactants, modifiers, and products) are species that have been either newly created

or looked up using IDs and synonyms (if the reaction is indeed a duplicate, all inputs and

outputs will have been found in the model and not created). CellDesigner assigns model-

specific IDs to objects (species and reactions) per SBML standards, so we build the reaction

parts-representing string using these SBML IDs. The type of the reaction is also added to

the string. Currently, the location of the reaction is ignored because of the volatility of this

annotation in different databases for reactions. The ID members of a reaction-representing

string are always sorted before creating the hash value of their concatenation. This way, if

a two reactions have exactly the same inputs and outputs and they are of the same reaction

type, they have the same reaction hash value. See procedure ImportReaction in Section 3 of

this document.

Before a pathway is imported to a CellDesigner model, a dictionary of reaction hash values

mapped to reaction objects is built from all existing reactions in the model, and used to look

up reactions by hash value (see procedure ImportPathway in Section 3 of this document).
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Caching database queries

Database query performance is dependent on the individual plugins that use the Path-

wayAccess library. As stated in the manuscript, our three PathwayAccess plugins use three

different communication protocols, each with their own performance strengths and weaknesses.

BioCycAccess

BioCycAccess uses our software, JavaCycO (http://vrac.iastate.edu/∼jlv/javacyc), to con-

nect to a local or remote BioCyc database. Communication uses a socket protocol that issues

Lisp code to and from the server, plus some special commands we developed for searching.

JavaCycO operates in two modes: 1) client mode, and 2) server mode. Within the BioCycAc-

cess plugin, JavaCycO operates in client mode. In client mode, JavaCycO maintains a cache of

objects in local memory in the database so that their information need not be repeated loaded.

To connect to a remote BioCyc database, BioCycAccess must communicate with a server

running JavaCycO in server mode along with the PathwayTools software. In both modes,

JavaCycO maintains a search cache mapping IDs, names, and synonyms to lists of objects

in the database, which is used to lookup existing objects during a pathway commit to the

database. If the client instance does not have a synonym in its cache, it asks the server

instance to search for it. Since the server mode instance of JavaCycO is persistent across

many clients, most clients will build their own cache by issuing search queries to the server;

if a server mode instance of JavaCycO runs long enough and is used by enough clients, it

will build a cache close to the complete database and become very fast when searching for

synonyms.

ReactomeAccess

ReactomeAccess uses an API we designed that wraps around the webservice provided by

Reactome.org to query its database. ReactomeAccess includes a custom connection object we

designed to maintain a cache of Reactome objects as they are loaded via the webservice.

http://vrac.iastate.edu/~jlv/javacyc
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MetNetAccess

MetNetAccess communicates with MetNetDB using

MetNetAPI (http://metnet3.vrac.iastate.edu/api/), which is a collection of objects wrapped

around SQL queries to the MetNetDB MySQL database. MetNetAccess leaves caching to

MetNetDB, as MySQL databases do maintain query caches.

Committing a model to a database

Only PathwayAccess plugins that connect to databases supporting data modification can

commit a CellDesigner model to the database. JavaCycO supports free data modification

(only expose your development PGDBs to JavaCycO for now), so BioCycAccess can commit

a model to a PGDB. MetNetAPI supporst data modification with user authentication, so

MetNetAccess can only commit a model to MetNet if the user has logged into MetNetDB with

a privileged user account. Reactome does not support data modification, so it is not an option

for ReactomeAccess.

All PathwayAccess plugins must implement three object initialization functions: initialize

a pathway, initialize a reaction, and initialize a species (aka ’entity’). Each of these functions

take as input the analogous object from CellDesigner (CellDesigner model is to generic pathway

object as CellDesigner reaction is to generic reaction object as CellDesigner species is to generic

entity object) and first must search the database for the species in the database. Recall that

all PathwayAccess annotation is available withing the CellDesigner species object because it

is contained in the Notes field as XML; If the species came from the database, it’s database-

specific ID is stored there, along with all names and synonyms from all databases it came

from. Other database-specific annotations are stored there as well. For example, MetNetDB

uses a confidence annotation, BioCyc databases provide a comment field, and both MetNetDB

and BioCyc share an EC field for zero or more EC numbers. If a match is found, plugins

must clear the object so that all information for it in the CellDesigner model can overwrite

existing information about it in the database. Else, the plugin must create the object in the

database and return it in an ’empty’ state, whatever that may mean for the particular database

http://metnet3.vrac.iastate.edu/api/
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and API. It is left to the plugin to handle multiple hits in the database. MetNetAccess and

BioCycAccess both use special convenience functions of the PathwayAccess library to prompt

the user to select one out of the multiple hits from the database when such a search result

occurs, and they remember the selection for subsequent attempts to initialize the object during

the same commit operation.

PathwayAccess plugins must also implement functions to add inputs (reactants and modi-

fiers) and outputs (products) to reaction objects in the database.

Database API’s manipulate biological object locally in memory and if they support modi-

fiying the database, they provide some sort of object commit function that actually writes the

object to the database. All PathwayAccess plugins must implement a commit object method

that takes as input one of its generic pathway database objects and writes it to the database.

See procedure CommitModel in Section 3 of this document.

Pseudocode

The following procedures are the important operations in PathwayAccess that allow for

integration from different databases as well as curation. See

http://vrac.iastate.edu/∼jlv/pathwayaccess/ for documentation, binaries, and source code.

This pseudocode is somewhat detailed to communicate exactly how and when the proce-

dures interact. Note that all of these procedures are implemented in the PathwayAccess library

and not in the plugins; new plugin developers never need to implement these procedures be-

cause we have already done so and provided the PathwayAccess library for it. They only need

to implement simpler database communication functions. In pseudocode below, these required

functions are used when the procedures ”ask plugin to...” These statements are first listed to

communicate the requirements for creating a new PathwayAccess plugin. See them in more de-

tail by clicking the API Documentation link at http://vrac.iastate.edu/∼jlv/pathwayaccess/.

Acknowledgement Thank you to Yves Sucaet and Eve Wurtele for developing MetNe-

tAPI and to Jesse Walsh for testing JavaCycO. This work is funded by the National Science

Foundation Plant Genome Research Program, DBI 0604755, and EEC 0813570.
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Procedure Calls to plugin that developer must implement

// This is not a procedure, but the set of lines in the following procedures

which ask the plugin for something.

GenericObjectsList ← ask plugin for all of genericPathwayObject’s reactions;1

id ← ask plugin for ID of genericReactionObject;2

GenericObjectsList ← ask plugin for all of genericReactionObject’s reactants;3

GenericObjectsList ← ask plugin for all of genericReactionObject’s modifiers;4

GenericObjectsList ← ask plugin for all of genericReactionObject’s products;5

id ← ask plugin to retrieve its database’s unique ID of object;6

name ← ask plugin to retrieve the name of object;7

type ← ask plugin to retrieve the CellDesigner type of object ; // CellDesigner constants8

like SIMPLE COMPOUND or GENE

location ← ask plugin to retrieve the subcellular location of object;9

Synonyms ← ask plugin to retrieve any synonyms of object;10

genericPathwayObject = ask plugin to intialize and commit the current CellDesigner model as11

a pathway;

genericReactionObject ← ask plugin to initialize Reaction;12

object ← ask plugin to initialize and commit species;13

ask plugin to add object to genericReactionObject as a reactant;14

object ← ask plugin to initialize and commit species;15

ask plugin to add object to genericReactionObject as a modifier;16

object ← ask plugin to initialize and commit species;17

ask plugin to add object to genericReactionObject as a product;18

ask plugin to commit genericReactionObject;19

ask plugin to add genericReactionObject to genericPathwayObject;20
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Procedure ImportPathway(plugin,genericPathwayObject,model)

input : a PathwayAccess plugin, plugin

input : a generic pathway object defined by the plugin’s database API, genericPathwayObject

// First, build a mapping from reaction hashes to reactions already in the

model

initialize ReactionHashes;1

ReactionsList ← ask current CellDesigner model for all existing reactions;2

foreach Reaction in ReactionsList do3

hash ← ReactionHash(Reaction);4

add (hash ⇒Reaction) to ReactionHashes;5

end6

// Next, build a mapping from species names and synonyms to species already

in the model

initialize SpeciesDictionary;7

SpeciesList ← ask current CellDesigner model for all existing species;8

foreach species in SpeciesList do9

foreach name in all NAME annotations for species do10

add (name ⇒species) to SpeciesDictionary;11

end12

end13

// Next, begin importing generic reactions

GenericObjectsList ← ask plugin for all of genericPathwayObject’s reactions;14

foreach genericReactionObject in GenericObjectsList do15

Reaction ← ImportReaction(plugin,genericReactionObject);16

id ← ask plugin for ID of genericReactionObject;17

AddAnnotation(Reaction, ”plugin.ID”, id);18

end19
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Procedure ImportReaction(plugin,genericReactionObject,ReactionHashes)

input : a PathwayAccess plugin, plugin

input : a generic reaction object defined by the plugin’s database API, genericReactionObject

input : a dictionary of reaction hash values mapped as keys to reactions in the model,

ReactionHashes. This is populated before every new download operation by reading

the XML node HASH stored in all reactions’ Notes attributes. See procedure

ReactionHash.

output: result, either a newly created CellDesigner reaction object, or the matching reaction

that already exists in the model

result ← create new, empty CellDesigner reaction;1

GenericObjectsList ← ask plugin for all of genericReactionObject’s reactants;2

foreach object in GenericObjectsList do3

species ← ImportSpecies(plugin,object);4

add species to result as a reactant;5

end6

GenericObjectsList ← ask plugin for all of genericReactionObject’s modifiers;7

foreach object in GenericObjectsList do8

species ← ImportSpecies(plugin,object);9

add species to result as a modifier;10

end11

GenericObjectsList ← ask plugin for all of genericReactionObject’s products;12

foreach object in GenericObjectsList do13

species ← ImportSpecies(plugin,object);14

add species to result as a product;15

end16

hash ← ReactionHash(result);17

if ReactionHashes not contains key hash then // it is a new reaction18

add result to current CellDesigner model;19

add (hash ⇒result) to ReactionHashes;20

return result;21

else // it is a redundant reaction22

destroy result;23

return ReactionHashes lookup hash;24

end25
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Procedure ReactionHash(reaction)

input : a CellDesigner reaction, Reaction

output: hash, a unique integer for the type, reactants, modifiers, and products of Reaction

initialize PartsList ; // a list of strings representing the parts of Reaction1

add Reaction’s type to PartsList;2

foreach species in all Reaction’s reactants, modifiers, and products do3

add species ID to PartsList;4

end5

sort PartsList;6

PartsString ← convert PartsList to a single concatenated string;7

hash ← JavaStringHashCode(PartsString); // Java’s hashing algorithm8

return hash;9
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Procedure ImportSpecies(plugin,object)

input : a PathwayAccess plugin, plugin

input : a generic biological object defined by the plugin’s database API, object

input : a dictionary of names, synonyms, and database IDs, SpeciesDictionary.

output: result, either a new Species, or existing match.

id ← ask plugin to retrieve its database’s unique ID of object;1

name ← ask plugin to retrieve the name of object;2

type ← ask plugin to retrieve the CellDesigner type of object ; // CellDesigner constant3

location ← ask plugin to retrieve the subcellular location of object;4

if location is unknown then5

location ← cytosol;6

end7

Synonyms ← ask plugin to retrieve any synonyms of object;8

key ← ’plugin id’; // search for ID from same database9

if SpeciesDictionary contains key then10

result ← SpeciesDictionary lookup key;11

else12

key ← ’location type name’; // search for name13

if SpeciesDictionary contains key key then14

result ← SpeciesDictionary lookup key;15

else16

foreach synonym in Synonyms do17

key ← ’location type synonym’; // search for a synonym18

if SpeciesDictionary contains key key then19

result ← SpeciesDictionary lookup key;20

break; // be greedy21

22

end23

end24

if result null then // No match found. Create a new species.25

result ← create new species of type type in location named name;26

end27

AddAnnotation(result, ”plugin.ID”, id));28

AddAnnotation(result, ”plugin.NAMES”, name ∪ Synonyms);29

add to SpeciesDictionary mapping ’plugin id’⇒result;30

add to SpeciesDictionary mapping ’location type name’⇒result;31

foreach synonym in Synonyms do32

key ← ’location type synonym’;33

add (key ⇒result) to SpeciesDictionary;34

end35

end36

return result;37
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Procedure AddAnnotation(sbase,label,Values)

input : a CellDesigner SBML object, sbase

input : an annotation label, label

input : a set of values to add under label, Values

// PathwayAccess annotations are stored by building a simple XML tree in the

Notes attribute of a CellDesigner species or reaction:

// <List name="label part 1">

// <List name="label part 2">

// <Item value="Values item 1">

// <Item value="Values item 2">

// <Item value="Values item 3">

// label can be a hierarchy path such as "MyPlugin.NAMES"

LabelParts ← split label on delimiter (’.’);1

notesXML ← get Notes attribute for sbase;2

XMLtarget ← find XML List node in notesXML referred to by LabelParts;3

if XMLtarget null then4

XMLtarget ← build XML List node in notesXML referred to by LabelParts;5

end6

add Values as XML Items under XMLtarget;7
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Procedure CommitModel(plugin)

input : a PathwayAccess plugin, plugin

organism ← ask user to select organism from those in plugin’s database;1

ask the plugin to validate the model for commit; // this is where MetNetAccess checks2

for privileged user authentication

if invalid then3

show error message;4

return;5

end6

genericPathwayObject = ask plugin to intialize and commit the current CellDesigner model as7

a pathway;

ReactionsList ← ask current CellDesigner model for all existing reactions;8

foreach Reaction in ReactionsList do9

genericReactionObject ← ask plugin to initialize Reaction;10

foreach species in Reaction reactants do11

object ← ask plugin to initialize and commit species;12

ask plugin to add object to genericReactionObject as a reactant;13

end14

foreach species in Reaction modifiers do15

object ← ask plugin to initialize and commit species;16

ask plugin to add object to genericReactionObject as a modifier;17

end18

foreach species in Reaction products do19

object ← ask plugin to initialize and commit species;20

ask plugin to add object to genericReactionObject as a product;21

end22

ask plugin to commit genericReactionObject;23

ask plugin to add genericReactionObject to genericPathwayObject;24

end25
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4. DISCRIMINATING OMICS RESPONSE GROUPS IN

BIOCHEMICAL PATHWAY NETWORKS

A paper to be submitted to Nucleic Acids Research

John L. Van Hemert 1,2,3 and Julie A. Dickerson1,2,3,4

Abstract

Analysis of Omics experiments generates lists of entities (genes, metabolites, etc) selected

based on specific behavior. Functional interpretation of these lists usually entails some sort of

catorgy enrichment tests using functional annotations like Gene Ontology terms. We present

a method for interpreting Omics lists in the context of metabolic pathway and regulatory

networks using directed stochastic modeling of the networks themselves. We also present web

tool for using our method and a proof of concept application to an E. coli transcriptomics data

set where we used the web tool to confirm common knowledge of the importance of Lipid A

and posit a model for E. coli response to Lipid A deprivation. Intuitively, the main theme is

response to osmotic stress, but we also were able to detect other responses that are supported

by the literature.

Introduction

Analysis of Omics experiments generates lists of entities (genes, metabolites, etc) selected

based on specific behavior. Common practice is to leverage existing functional knowledge of

1Electrical and Computer Engineering
2Bioinformatics and Computational Biology
3Iowa State University, Ames, Iowa
4Author for correspondence
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the entities in a list by further listing the functional annotations assigned to the members of

the list. Category enrichment analysis generally refers to testing the null hypothesis that the

distribution of functional annotation in the entity list is similar to the distribution of functional

annotation for all entities (Nettleton et al., 2008; Barry et al., 2005; Subramanian et al., 2005;

Maere et al., 2005). If that hypothesis is rejected, one or more of the functional annotations

in the entity list is either over- or under-represented, and a general functional response or

perturbation is inferred for the experimental treatment and specific test used to generate the

entity list. For example, most plant biologists mine a number of sets of genes from results that

exhibit an expected behavior of biological interest and then map the selected genes to static

functional annotation and then manually or computationally determine which functions are

associated with the behavior in the experiment (Nettleton et al., 2008), (Maere et al., 2005).

Knowledge is often digitally stored as networks, whether it is ontological (Ashburner et al.,

2000; Cordero et al., 2009; Avraham et al., 2008) or biochemical (e.g., Reactome (Vastrik et al.,

2009), KEGG (Okuda et al., 2008), PathwayTools/BioCyc (Krummenacker et al., 2005), and

MetNetDB (Wurtele et al., 2007)). This makes functional analysis much more complex than

simple set comparisons, requiring more complex tools like MapMan (Thimm et al., 2004; Rotter

et al., 2009; Usadel et al., 2009), Array2KEGG (Kim et al., 2010), or KEGG Spider (Antonov

et al., 2008) to name a few. Most plant pathways are stored in AraCyc, PlantCyc (both BioCyc

Pathway Genome Databases (PGDBs)), and MetNetDB. These resources provide web-based

access to simple pathway visualizations, searching, links to other databases, as well as some

basic analysis tools.

Category enrichment is unable to directly infer causality; if a functional annotation term

is enriched in an entity list, we cannot determine whether the function is somehow causing the

perturbation of the members of the entity list, or members of the entity list are themselves a

response to some other signal and the enriched function is a response to the entities.

At the same time, biochemical pathway models are accumulating in central repositories

such as BioCyc, MetNetDB, Reactome, and KEGG databases. These pathway models use

and assign functions to entities by placing them in networks of chemical reactions. Pathway
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annotation has also been used in category enrichment where entities are annotated with the

names of the pathways in which they participate. Unfortunately, pathway annotation enrich-

ment suffers from the same general problems as category enrichment plus it fails to consider

the inter-connectivity and reactive relationships between different entities, reactions, and path-

ways; it is no different from common functional annotation enrichment analysis.

Our purpose in this work is to provide a methodology and tool for discriminating groups of

entities (Response Groups) in a pathway network which are highly connected to a Query List

of entities which results from a previous selection from Omics data. Such a tool has several

requirements:

1. Receive as input a biochemical pathway network structure

2. Receive as input a Query List of entities referred to by nodes in the pathway network. En-

tities in a Query List could be any combination of genes, enzymes, chemical compounds,

or reaction events in the pathway network.

3. Receive as input a definition of Response Groups to discriminate. Response Group

compartmentalization must be flexible; Response Groups can be the set of all functional

pathways in the network, all reactions in the network, or the set of all compound classes

in the network, for example.

4. Response Groups must be able to overlap on entities; Entities, both members and non-

members of the Query List, must be able to be members of multiple Response Groups.

5. The set of all Response Groups need not cover then entire pathway network; not all

nodes in the pathway network are guarranteed to be a member of any Response Group.

Background Terminology

A graph or network is a set of vertices or nodes connected by a set of edges.

A connected component in a graph is a set of nodes and edges where there is a path

from each node in the connected component to all other nodes in the connected component.
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An adjacency matrix, CN×N , is a square matrix representation of a graph with N

nodes, where Cij indicates the weight of the edge from node i to node j. Zeros indicate the

absence of an edge and unweighted graphs use the same weight value througout all existing

edges. Undirected graphs have the property of symmetry where Cij = Cji.

A stochastic matrix is a matrix whose rows and/or columns sum to one. If the rows

sum to one, the matrix is right stochastic. If the columns sum to one, the matrix is left

stochastic. If both the rows and columns sum to one, the matrix is doubly stochastic.

A state transition probability matrix, AN×N , is a stochastic adjacency matrix where

Aij represents the probability of a transition from state (or node) j if the system is currently

in state i.

A sparse matrix is one which contains mostly zeroes. A sparse matrix can be stored

in a way that avoid storing zero-values, saving space and compute time in operations on the

sparse matrix. In contrast, a dense matrix is one with relatively few zeroes. Large, dense

matrices are difficult to process because they contain such a large number of values.

Omics refers to high-throughput biological experiments which quantify a large number

of variables (thousands, or even millions) simultaneausly during specific treatments or pertur-

bations. For example, genomics refers to the study of an organism’s genome, transcriptomics

refers to the study of all RNA-encoded gene transcripts in an organism’s transcriptome, and

metabolomics refers to the study of all metabolites in an organism’s metabolome. Analysis of

Omics experiments generates lists of entities (genes, metabolites, etc) selected based on specific

behavior.
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Existing uses of flow simulation

Graphical Clustering

Flow simulation is used by the tool MCL (”Markov Clustering”) (van Dongen, 2000). Input

is an undirected, weighted network of nodes edges. The algorithm take successive powers of

the stochastic state transition probability matrix, with an inflation step at each iteration based

on a single inflation parameter which degrades low-flowing edges until they vanish, creating a

set of connected components which represent the resulting clusters. This method is useful for

clustering data based on the structure of some meaningful undirected graph representing it,

such as a correlation network as in Mao et al. (2009).

The Random Walk Kernel

Graph kernels are functions which take as inputs adjacency matrices for two graphs and

return as results some metric that usually compares the two networks (Vishwanathan et al.,

2010). A random walk kernel is a kernel which conducts operations on the input matrices

which simulate random walks along the edges of the input matrices’ networks. Towfic et al.

(2010) have used a state transition probability matrix multiplication called the random walk

kernel to infer homologues from protein interaction networks.

Exsting methods model undirected flow. Many kernels and other stockastic flow-

based methods for processing networks assume the network is undirected. This means edges in

the network pair their respectively connected nodes in no particular order. Conversely, directed

networks’ edges have a specific ordering; one of the nodes a directed edge connects is the

source and the other node is the target. The direction of the edges goes from source to target.

However, biochemical pathways are often modeled as directed networks. Nodes in a pathway

network represent both physical entities such as genes or enzymes, as well as intangible events

such as chemical reactions. Edges between such nodes represent interaction (ie regulation or

conversion) and/or participation in an event (ie catalysis of a reaction). Direction is necessary

to indicate the direction of reactions, ie, which participants are catabolized and which are
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anabolized in a particular reaction.

Other graph theoretical metrics and properties

If we model metabolism as a directed network, there are many well-studied metrics and

methods for analysis available. Betweenness is the measure of a graph object’s (node or edge)

centrality in the graph by counting the number of shortest pathways between all nodes in the

graph pass through it. Degree/Hubness is the number of edge connections to a particular node

in a graph. Density is a measure of the number of edge connections in a graph, calculated

by dividing the number of edges in the graph by the maximum non-redundant edges possible

(Opsahl et al., 2010). Scale-free networks have a degree distribution that follow a power

law, which is a relationship between two quantities (here, it is node degree and node degree

frequency) where one quantity is a power function of the other. Natural networks are often

scale-free because it is often the case where there are a few highly connected central hubs in

the network while the rest of the nodes are less connected (Barabasi and Bonabeau, 2003).

Modeling directed random walks

Directed flow simulation is possible using stochastic state transition probability matrices,

but the matrices are not guarranteed to be doubly-stochastic. Here, we conceptualize only

right-stochastic state transition probability matrices by using them to represent a random

walk on the network of a finite number of steps; in a given step in a random walk on the graph

represented by right-stochastic state transition probability matrix, AN×N , if we are standing

at node i, we must take a step somewhere, so the sum
∑
Ai· must equal one. On the other

hand, if a random walk in AN×N lands on node j, the sum
∑
A·j may be less or greater than

one, indicating the walk hit j, but may not have come from any other node, or have an invalide

probability greater than one, respectively. We will avoid the non-left-stochastic contradiction

by only considering random ”forward” steps from i to j on edges Aij .

For a state stransition probability matrix, AN×N , the state stransition probability matrix

in exactly w steps is Ak; the probability of transitioning from state i to state j in w steps is
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Awij . Therefore, the sum of successive powers of A up to Aw, MN×N would be the matrix of

hit rates in a random walk of length w steps (Equation 4.3).

AN×N = The directed, non-symmetric state transition probability matrix (4.1)

Aij = Cij/
∑

Ci· (4.2)

MN×N =
w∑
s=1

As, for a random walk of w steps (4.3)

Given a biochemical pathway network represented by a weighted adjacency matrix, CN×N ,

we can row-stochastize it to fit the form of A in Equation 4.1 by dividing the values in C

by the sum of their respective row as in Equation 4.2. This simple process is not often used

on large networks (thousands of nodes or more) because computational space limitations.

Indeed, adjacency matrices for most networks are sparse, but as successive powers are summed,

the result quickly because dense and difficult to process. Fortunately, biochemical pathway

networks, while sparse, contain several hub nodes, which are highly connected to the rest of the

network (ie, water and energy molecules), allow relatively short random walk models (10-20

steps) to cover most of a pathway network. The resulting matrix M is the matrix of hit rates

on random walks between nodes; Mij is the hit rate at j of random walks of size w steps

starting at i. Generally, we call this metric ’random walk flow’.

Summarizing random walk flow between groups of nodes

Our original problem involves a list of nodes in a pathway network and comparing it to

different groups of nodes in the same network. For example, our query list might be a list of

genes that are differentially expressed under a specific condition and the response groups could

be the functional pathways defined by common biological knowledge (a pathway is a subset of

nodes and edges in the entire network that are commonly associated with a specific process

or function, ie glycolysis). To summarize the flow between a query list and a given response

group, we take the sum of flow (or random walk hit rates) between nodes in the query list

and nodes in the response groups. This is a simple matrix operation using a reponse group
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membership indicator matrix, ΥN×G, where Υng = 1 if node n is a member of response group

g and zero otherwise. The matrix product of the matrices MN×N and ΥN×G, ΨN×G contains

the the sums of flow from each node and the nodes in each response group (Equation 4.4). We

then take the matrix product of an indicator vector, Q1×N , and ΨN×G, where Qn = 1 if n is

in the query list and zero otherwise. The result, Θ1×G, is the vector of sums of flow from the

nodes in the query list to the nodes in each response group (Equation 4.5).

ΨN×G = MN×NΥN×G (4.4)

where Υng = 1 if node n is in response group g, 0 otherwise

ΘG×1 = (Q′N×1ΨN×G)′ = (Q′N×1 (MN×NΥN×G))′ (4.5)

where Qn = 1 if node n is in the query list, 0 otherwise

Reversing directionality

The previous formulation results in random walk flow summarizations from the query list

to response groups, ie pathways which genes in a query list regulate. The question of what

is regulating the query list, or signalling its members to change behavior, is often equally or

even more interesting. We can reverse direction rearranging the matrix multiplication to result

in another vector of flow rates for each response group, only these represent flow summaries

from the response groups to the query list (Equations 4.7-4.9). We must first re-initialized the

random walk rate matrix, A, as A(rev) by left-stochastizing the adjacency matrix (Equation 4.6)

because reverse direction focuses on backtracking the directed graph using arrival probabilities

which are represented by columns in A(rev). If we sum the flow rates in both directions at the

Ψ step, we get flow rate summaries between the query list and each response group overall (in

both directions) (Equation 4.10).

A
(rev)
ij = Cij/

∑
C·j (4.6)

M
(rev)
N×N =

w∑
s=1

A(rev)s (4.7)



www.manaraa.com

45

Ψ
(rev)
G×N = Υ′N×GM

(rev)
N×N (4.8)

Θ
(rev)
G×1 = Ψ

(rev)
G×NQN×1 =

(
Υ′N×GM

(rev)
N×N

)
QN×1 (4.9)

Θ
(tot)
G×1 = (Q′N×1(ΨN×G + (Ψ

(rev)
G×N )′))′ (4.10)

Modeling and testing values in Θ, Θ(rev), and Θ(tot)

After obtaining metrics for random walk flow between the query list and each response

group, we would like to discriminate which metrics are significantly high; these are the response

groups which are highly connected to the query list in a specific direction. This might be

accomplished by a statistical test of the null hypothesis that the observed random walk flow

between a response group g and the query list is equal to that of a randomly selected query

list and g. There are two complicating considerations for designing such a test.

1. Response group size. The number of nodes and edges in a reponse group is variable.

Therefore, we must account for the assumption that larger response groups are more likely

to have higher random walk flow with a query list than smaller response groups. Using

mean flows instead of sums between the nodes in the query list and each response group

may account for this, because it would penalize larger resopnse groups. However, means

would also complicate the matrix operations we use to summarize the flows. Further,

mean metrics are susceptible to outliers, which could bias our model.

2. Response group connectedness. In addition to size, response groups have different general

connectivity with the rest of the pathway network due to its inherent structure. This can

also cause bias in flow metrics where more connected response groups are more likely to

have higher flows with a query list than smaller response groups. While there is likely a

correlation between response group size and connectedness, it is not guarranteed, so we

must account for all combinations of size and connectivity.



www.manaraa.com

46

The underlying flow distribution

We begin with a bootstrapped assessment of the distribution of values in the M matrices

(Equations 4.3 and 4.7). Most of these non-negative values are near zero, with a skewed

upper tail containing those higher random walk flow relationships. A common probability

distribution with these properties is the Exponential distribution, which is often used to model

waiting times for an event to occur, such as the time until a light bulb will burn out. If we plot

our bootstrapped sample from observed flows for random walks of w = 10 steps on the EcoCyc

pathway network (Keseler et al., 2009), we see a good fit to an Exponential distribution (Figure

4.1) for values more distant from zero.

(a) M (b) M (rev)

Figure 4.1 General assessment of fit to an Exponential distribution for val-

ues in M (a) and M (rev) (b) on a given pathway network. Each

assessment includes a histogram with a fit Exponential density

and Quantile-Quantile plot for all values in the matrix (top)

and values greater than 0.005 (bottom) from 10-step random

walk simulations on the EcoCyc pathway network.
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The Exponential distribution has many useful properties such as memorylessness (PExpλ(X >

t + δ|X > t) = PExpλ(X > δ), where λ is the rate parameter, t is a length of waiting time,

and t+ δ is a longer waiting time). Another useful property is that the sum of k independent

and identically distributed Exponential random variables with rate parameter λ follows what

is called the Erlang distribution with shape parameter k and rate parameter λ. The Erlang

distribution is a special case of the Gamma distribution where the shape parameter is an in-

teger. Since our matrix multiplication in Equations 4.5 and 4.9 actually sum M values for a

given query list in each response group, we can assume that the values in the Θ vectors each

follow a different Erlang distribution with same shape parameter equal to the size of the query

list and different rate parameters (Equation 4.13). We can use the same model for the reverse

direction (Equation 4.14) and total in both directions (Equation 4.15), where k is doubled

because the values are summed twice- once for forward and once for the reverse direction.

Mij ∼ Exp(λ) ,where λ is the inverse of the mean of all values in M (4.11)

M
(rev)
ij ∼ Exp(λ(rev)) ,where λ(rev) is the inverse of the mean of M (rev) (4.12)

Θg ∼ Erlang(k, λg) ,where k is the size of the query list (4.13)

Θ(rev)
g ∼ Erlang(k, λ(rev)

g ) (4.14)

Θ(tot)
g ∼ Erlang(2k, λ(tot)

g ) (4.15)

Assessing the Erlang-based model involves a Monte Carlo simulation where, for a given

query list size, k, we repeatedly draw a random query list of k entities out of the pathway

network and compute Θ, Θ(rev), and Θ(tot) each draw, building a multivariate (in the number

of response groups) sampling distribution for each Θ. For a given reponse group, we then

fit an Erlang distribution to the simulated results using the convenient Erlang distribution

property that the rate parameter equals the ratio of the shape parameter to the mean. With

this ternary relationship, we can estimate the rate parameter and by taking the ratio of the

shape parameter (k) to the mean of the Monte Carlo simulation. As with the Exponential

distribution above, for a given query list size and response group, we can then inspect fit by
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plotting the histogram of the Monte Carlo values with the density of the fit Erlang distribution

as well as creating a Quantile-Quantile plot for each of Θ, Θ(rev), and Θ(tot) (Figure 4.2).

(a) tRNA charging pathway (106 nodes) (b) putrescine degradation II (30 nodes)

Figure 4.2 Erlang assessments for arbitrarily selected pathway response

groups after random walk simulations of w = 10 steps on the

EcoCyc pathway network and 100 Monte Carlo simulations of

flow rates with a query list of size k = 123. The three rows

are assessments of the Θg, Θ
(rev)
g , and Θ

(tot)
g values, respec-

tively, where g is the tRNA charging pathway (a) and putrescine

degradation II (b).

Hypothesis Testing

After establishing an Erlang-based model for our test statistics, Θ, Θ(rev), and Θ(tot), we

can define a null hypothesis to test for each Θ vector and each response group. We stated earlier

that the goal is to test the case where there is no flow relationship between a response group

g and the query list, so our null hypothesis, Ho, is that the unknown true rate parameter, λ∗g,

equals the Monte Carlo-estimated λg, which can be interpreted as the rate parameter for flows

between unrelated query lists and response groups (Equation 4.16). We make the analogous

null hypotheses for the other two Θ vectors (Equations 4.17 and 4.18).
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H0 : λ∗g = λg (4.16)

H
(rev)
0 : λ∗

(rev)

g = λ(rev)
g (4.17)

H
(tot)
0 : λ∗

(tot)

g = λ(tot)
g (4.18)

(4.19)

The alternative hypothesis should reflect a high flow rate between the query list and the

response group g; a random query list drawn from the set of nodes which are biologically linked

to response group g would follow an Erlang distribution with the same shape parameter, k, but

a larger rate parameter, λg. Therefore, the counter hypotheses are the upper-tailed alternatives

in Equations 4.20, 4.21, and 4.22.

HA : λ∗g > λg (4.20)

H
(rev)
A : λ∗

(rev)

g > λ(rev)
g (4.21)

H
(tot)
0 : λ∗

(tot)

g > λ(tot)
g (4.22)

And we reject H0 if the observed Θg falls above the (1 − α) percentile of the Erlang

distribution with shape k and rate λg, where α is a selected Type I Error Rate, which is the

rate at which the null hypothesis is rejected incorrectly (Equations 4.23, 4.24, 4.25).

Reject H0 if PErlk,λg (X > Θg) ≤ α (4.23)

Reject H
(rev)
0 if PErl

k,λ
(rev)
g

(X > Θ
(rev)
g ) ≤ α (4.24)

Reject H
(tot)
0 if PErl

k,λ
(tot)
g

(X > Θ
(tot)
g ≤ α (4.25)

Multiple testing correction

When multiple hypothesis tests are conducted simultaneaously, the Family Wise Error Rate

(FWER) is inflated by the number of tests; If we conduct 10 tests, each with α = 0.01, each
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test has a 1% probability of making a Type I Error, but the overall probability of making a

Type I Error is the sum of each α, or 0.01×10 = 0.1. The multiple testing problem has been a

focus for microarray processing because families of tests are conducted on thousands of genes in

this field creating strong demand for clever correction methods. The most straight-forward and

conservative correction, named for Bonferronni Holm (1979), simply uses a corrected α value

for tests equal to the original desired Type I Error Rate divided by the number of tests, α′ = α
m ,

where m is the number of tests. Several more complex methods exist which focus on the False

Discovery Rate and estimate parameters for the specific distribution that p-values follow for

microarray experiments (Storey, 2003; Storey and Tibshirani, 2003; Storey et al., 2004; Fodor

et al., 2007), where p-values are uniformly distributed between zero and one with a spike near

zero containing the relatively large set of genes perturbed by the experiment. Unfortunately,

p-values for response groups are not always expected to follow such a distribution because there

are often only a few significant response groups in one of our analyses. For this reason, we

discretionarily use Bonferronni correction to correct for multiple testing where an independent

test is conducted for each response group.

Applications Using Our Web Tool

In order to validate our method on real data and present our web tool, we will walk through

a use case where we use the web tool (Figure 4.3) to discriminate response groups from the

EcoCyc pathway network.

Use Case: LipidA inhibition in E. coli

The data for this use case comes from the GEO (Barrett et al., 2009) dataset accession

GDS3597 by Zhu et al. (2009), who investigated transcriptional regulation by FabR of the fatty

acid biosynthesis genes fabA and fabB in the presence of endogenous and/or exogenous unsat-

urated fatty acids. Among other factors in their experiment, gene expression was measured in

a control and treatment with CHIR-090, an antibiotic which inhibits the biosynthesis of Lipid

A (Figure 4.4, Barb et al. (2007)). Lipid A is the anchor by which lipopolysaccharides attach
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Figure 4.3 The main page for beginning an analyses with our web tool. It

takes three simple inputs: 1) a list of BioCyc IDs which can

be looked up using our mapping service (Figure C.1), 2) the

pathway network, and 3) the response groups to discriminate.

to the outer membrane of gram-negative bacteria, which provide much of the cell’s structural

stability and are also recognized by immune systems.

The query lists were generated using GEO’s T-test data analysis tool. Single-tailed

tests at the 90% confidence level for ”control < treatment” and ”treatment > control” created

a query list for up-regulated genes and down-regulated genes, respectively. These lists are not

actually genes, but probeset identification numbers which do not exist in our reference pathway

network, EcoCyc. Fortunately, our web tool includes a mapping service for the Affymetrix

probeset IDs on the platform used by GEO dataset GDS3597, which takes as input the list

of probeset IDs and presents us with the corresponding EcoCyc IDs, which our web tool can

process (ID Lookup on Figure 4.3 and Figure C.1).

Up-regulated genes

123 EcoCyc genes were identified from the list of probesets switched higher when lipid

A synthesis was inhibited. We can then discriminate each of two sets of response groups
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Figure 4.4 CHIR-090 binds the LpxC enzyme, preventing it from catalyz-

ing the committed step in Lipid A biosynthsis. Image from

Barb et al. (2007).

(Response Groups on Figure 4.3).

Pathway Response groups were discriminated first. When we click Submit, the web

tool displays our current parameters on the left with three plots: one for each of the forward

direction, reverse direction, and total, respectively (Figure 4.5). The default is to use Bonfer-

ronni correction at the 95% confidence level and the red cutoff lines are drawn accordingly.

Response groups that fall above the red lines have significantly high flow with the query list

and are listed below with p-values. We can also hover over response groups in the plots to see

their names and p-values. There is also a set of icons and buttons to help navigate the web

tool (Table C.1).

The superpathway of KDO2-lipid A biosynthesis is the only pathway that is a significant

successor (downstream in the directed pathway network) to our query list of up-regulated

genes, with a p-value less than 0.0001. This is the expected result when the cells are unable

to produce the lipid A they require for membrane structure; they are increasing their efforts

to produce more lipid A. The CpxAR Two-Component Signal Transduction System is the

only significant predecessor (upstream) pathway to our query list of up-regulated genes, with

a p-value less than 0.0001. This is a signalling system which senses cell envelope stress (Wolfe
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Figure 4.5 Results are visualized with a plot of the response groups for each

direction and the total. The Y-axes are Θ, Θ(rev), and Θ(tot),

respectively. The X-axes are the inverses of λ, λ(rev), and λ(tot),

respectively, which are also the expected values of the Θ’s for

the respective Monte Carlo simulations. The red lines mark

the null hypothesis rejection cutoff, given the confidence level,

correction, and λ value (X-coordinate).

et al., 2008), which is also expected because the we can interpret our results as evidence for

CpxAR signalling the increased expression of the genes in our query list. The CpxAr system

responds to cell envelope stress and regulates transcription of the porin genes ompF and ompC,

and a loss of function mutation in cpxAr can result in increased transcription of ompC and

decreased transcription of ompF (Batchelor et al., 2005).

Reaction response groups can give us a more precise idea of which events in the

pathway network are related to a query list. We start a new analysis, enter the same query

list, select the same EcoCyc network, but select a different set of response groups: the EcoCyc

reactions. Each response group contains one reaction event node in the network plus all of
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the participants, both input and output. Now, results plots are not of pathways, but reactions

in EcoCyc (Figure 4.6). Discrimination of reactions produce much longer lists of significant

response groups. To get an idea of how many are significant in each direction, we click the

Download PDF button to see the same plots along with a Venn Diagram of the counts of

significant response groups (Figure 4.7).

Figure 4.6 Points on these scatter plots represent EcoCyc reactions. Again,

reactions above the red lines are significantly related to the

query list containing up-regulated genes.

If we click the Response Group IDs button, we can download the BioCyc IDs of the signifi-

cant successor (forward direction) reactions. We then used the JavaCycO software (Van Hemert

and Dickerson, 2010b) and Cytoscape (Shannon et al., 2003) to visualize the significant reac-

tions within their integrated network of respective pathways and highlight the members of

the query list and the significant reactions (Figure 4.8). Blue-marked reactions are described

in Table C with descriptions taken directly from EcoCyc. These reactions include several

phospholipid-building reactions, which is consistent with our conclusion from the pathway

response groups that if lipid A synthesis is inhibited, cells invest in compensating for its de-

pletion. We also see in the list the Arabinose-5-phosphate isomerase reaction, which produces

the first precursor to keto-deoxyoctulosonate (”KDO”). KDO is an antigen that is anchored to

the outer membrane by lipid A (Figure 4.9) (Raetz et al., 2006). Since the genes in our query

list are up-regulated, cells not only respond to lipid A inhibition by attempting to produce
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Figure 4.7 The circle labeled ”Q< −R” is the set of significant response

groups in the reverse direction. The circle labeled ”Q− >R” is

the set of significant response groups in the forward direction.

The circle labeled ”Q< − >R” is the set of significant response

groups in the tests for flow in both directions.

more lipid A (the anchor), but they also respond by attempting to produce more KDO. A

hypothesis might be that cells use the same sensing mechanism to determine their amount

of functioning lipid A and KDO. Further, the OmpR phosporylation reaction is significant.

OmpR is phosphorylated by EnvZ when osmotic pressure drops in the cell disrupting home-

ostasis. Phosphyrlated OmpR binds promoters for the ompF and ompC genes which code for

the OmpF and OmpC porins (Batchelor et al., 2005). We could hypothesize that the inhibition

of lipidA disrupts osmotic homeostasis and the cell responds by attempting to produce more

pressure-relieving porins.

We can conduct the same analysis for the significant predecessors (reverse direction) re-

actions to our query list containing up-regulated genes. The list or significant reactions is

shorter and the list of significant reactions that are part of pathways is shorter still (Figure

4.10). The significant reactions in the pathways are listed in Table C. This list is made up of

several reactions which phosphorylate nitrate and nitrite sensing response proteins and others

which activate ArcAB, which has recently been found to not only regulate general anaerobic

growth, but also plays a role in resistance to reactive oxygen compounds (Loui et al., 2009).
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Figure 4.8 The integrated pathways containing significant successor reac-

tions. Significant successor reactions are marked blue while the

members of the query list which happen to also be in this subset

of pathways are marked red. Node types are color-codes as fol-

lows: Yellow=Gene, Turquoise=Proteins, Green=Metabolites,

Grey=Reactions.

Down-regulated genes

81 EcoCyc genes were identified from the list of probesets switched to lower expression

when lipid A synthesis was inhibited.

Pathway response groups are plotted in Figure 4.11. When conservatively using Bon-

ferronni correction, two pathways were significant, but some pathways seemed to be plotted

very near the significance cutoff line. We adjusted the confidence level to 99% and unchecked

the Bonferronni option to be slightly less conservative with our Erlang tests, which resulted in a

total of four significant pathways instead of two. The TorSR and ZraSR Two-Component Signal

Transduction Systems are the significant successor (forward direction) pathways to the query

list. The TorSR system regulates use of Trimethylamine N-oxide (TMAO), which is both an
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Figure 4.9 The saccharolipid Kdo2-Lipid A. Glucosamines are blue, KDO

is red, acyl chains are black and phosphate groups in green.

(Raetz et al., 2006)

osmoprotectant and alternative electron acceptor during anaerobic respiration (Ansaldi et al.,

2000). The ZraSR system senses toxic levels of zinc and lead in the periplasm. The CpxAr

Two-Component Signal Transduction System and Acetoacetate Degradation to Acetyl CoA

pathways are the siginificant predecessors (reverse direction) to the query list. Recall that the

CpxAr system also appeared in the signifcant predecessor pathways of the up-regulated query

list, a contradiction that might be explained by incorrect selection of confidence intervals for

the query list generation and/or the Erlang tests. In this case, the CpxAr system has an ex-

tremely low p-value, so if we adjust the confidence level for the Erlang test, it will not drop out

of either the up-regulated pathways or the down-regulated pathways. If we adjust the confi-

dence level for the T-tests used to generate the up- and down-regulated gene lists, we can check

whether the Erlang test results change. After entering query lists based on T-test at the 95%

confidence level, results for the up-regulated pathways in both forward and reverse directions as

well as down-regulated successors (forward direction) remained constant, while down-regulated



www.manaraa.com

58

Figure 4.10 The integrated pathways containing significant predecessor re-

actions. Significant predecessor reactions are marked blue

while the members of the query list which happen to also

be in this subset of pathways are marked red. Node types

are color-codes as follows: Yellow=Gene, Turquoise=Proteins,

Green=Metabolites, Grey=Reactions.

predecessors (reverse direction) changed from CpxAr to the DpiAB Two-Component Signal

Transduction System, which regulates citrate fermentation genes. The DpiAB system is also

known to interrupt chromosome duplication in the SOS response (Yamamoto et al., 2008).

Acetoacetate degredation feeds carbon energy into the TCA cycle (Pauli and Overath, 1972)

and genes for this production are negatively regulated by ArcA.

Generating hypotheses

After completing our web-based analysis of the two query lists of genes, we can hypothesize

a model for E. coli decision making when lipid A is inhibited. We clearly saw activity relavent

to the cell’s boundary (envelope and periplasm), which is consistent with our understanding of

the utility of lipid A. We can further use our results to postulate a model for the cell’s priorities
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Figure 4.11 The same plots from our web tool as Figure 4.5, but the query

list here contains the down-regulated genes.

when it is under this type of stress using Table 4.1 to organize interpretation of the response

groups. Our model is as follows (entries in Table 4.1 are in ”()”): Lipid A inhibition causes a

breakdown of the cell’s structure and osmotic stress, which the cell senses and responds with

several different decisions. Firstly, it activates the genes to produce both the inhibited lipid A

(1) and the KDO (2) that the lipid A should be anchoring to the cell membrane. It also shifts

priorities away from growth (6,9), toxin sensing in the periplasm (5,9), and osmoprotectant

production (7). OmpR activation is increased because both the OmpC and OmpF porins

production require it (3), but since the promoter for ompf has higher affinity for OmpR-P

than the promoter for ompc, ompF transctription is specifically decreased using a separate

mechanism (4) so that only OmpC porins are produced (Figure 4.12). Most of these inferences

are consistent with the literature, and we can hypothesize that the cell knows that the osmotic
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stress is caused by structural insufficiencies and not by a severe change in solute concentrations,

so it chooses not to produce osmoprotectant.

Table 4.1 Interpretation of different flow simulations and tests.

Successors (forward) Predecessors (reverse)

Up-reg

Activated by the query list

1. KDO2-lipid A biosynthesis

2. Arabinose-5-phosphate isomerase

3. OmpR phosporylation

Activate the query list

4. CpxAR signalling

5. nitrate and nitrite sensors

6. ArcAB

Down-reg

De-activated by the query list

7. TorSR signalling

8. ZraSR signalling

De-activate the query list

9. DpiAB signalling

Discussion

The main weakness of our method is sensitivity to missing information from the path-

way network; our method does not directly infer new pathway models. Rather, it presents

existing, complex knowledge about pathways in the context of a list of entities to generate

hypotheses. If an entity in a query list is not understood, the best we can do with our method

is assume ”guilt by association” and infer its involvement in the response groups we associate

with the well-understood entities in the query list. This is especially true for query lists made

entirely of genes because genes are usually leaves on branches of the pathway network with flow

only from the gene to the rest of the network via translation to enzymes; these cases cannot

produce results for the reverse direction because there are no flows into the query list. Re-

verse flow results are only possible when the pathway network contains an adequate amount of

gene-regulatory relationships, which are represented by edges and flows into genes. Cycles and

feedback loops might create ambiguity between significant successor and predecessor response

groups.

We have developed a method and tool which leverages organism-wide pathway models for

interpreting Omics data and generating hypotheses. It accomplishes our original objectives:

1. Receive as input a biochemical pathway network structure, a Query List of entities, and
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Figure 4.12 A model for E. coli responses to lipid A inhibition based on

results from our web tool and confirmed by literature. Red

boxes are the initial signals, blue boxes are the intermediate

responses, and yellow boxes are the final responses.

a set of Response Groups to discriminate.

2. Visually and interactively present hypothesis test results for decision support and discre-

tionary test parameter adjustments.

3. Entities in a Query List could be any combination of genes, enzymes, chemical com-

pounds, or reaction events in the pathway network.

4. Response Groups can be the set of all functional pathways in the network, all reactions

in the network, or the set of all compound classes in the network, for example.

5. Response Groups can overlap on entities.

6. The set of all Response Groups need not cover then entire pathway network.
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7. The hypothesis test accounts for both Response Group size and inherent connectivity

with the rest of the network.

We used our web tool to interpret Omics data from a simple E. coli microarray dataset,

verified the results with the literature, and generated new hypotheses. Future work includes

application to more diverse Omics datasets which include compounds and enzymes. Our tool

is compatible with output from the Markov Clustering software (MCL) by van Dongen (2000)

and we intend to investigate Response Groups defined by graphical clusters mined from large

metabolice networks. Lastly, the web tool is to be fully integrated with the PLEXdb.org (Shen

et al., 2005) website.
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5. EXPRESSION PLATFORM INTEGRATION AND INSIGHTS INTO

THE GRAPEVINE’S RESPONSE TO SHORT WINTER DAYS

A paper to be submitted to Plant Physiology

John L. Van Hemert 1, Erin E. Boggess1,2, Alberto Ferrarini 2, Massimo Delledonne4, and

Mario Pezzotti4, Anne Fennell 3, and Julie A. Dickerson1

Abstract

Besides being economically significant, The Vitaceae (the grape family) provides a unique

domestication history as well as strong responses to environmental signals, such as winter dor-

mancy. Mining gene expression data for biomarkers and pathway activity is a key component

to understanding the mechanisms controlling such responses in plants. In this paper, we share

our approach to pre-processing the data, exploratory analysis, additional data filtering, and

clustering transcriptomics data. Pre-processing included a technical study aimed at comparing

and integrated different expression platforms. Using results from the technical study, we were

able to extract dormancy-related genes from an original set of 16436, and then form biologically

meaningful clusters that supported interpretation of signaling activity and regulatory activity.

Our results provide insight into possible cellular mechanisms that occur at the onset of

grape dormancy, by investigating known biological processes related to overrepresented anno-

tation as well as examination of possible experimental variation within a treatment type over

time are necessary, we proposed biological explanations for our computational results. These

1Electrical and Computer Engineering, Bioinformatics and Computational Biology, Iowa State University,
Ames, Iowa

2Biotechnology, University of Verona, Italy
3Horticulture, South Dakota State University
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explanations are the beginnings of new biological models for the underlying mechanisms during

photoperiod-induced bud dormancy in V. riparia. We observed transcriptional responses to

environmental signals as well as different groups of genes responding to one another.4

Introduction

The Vitaceae (grape) is comprised of a diverse collection of species that have been bred

to grow in a variety or climate conditions. In addition to being an economically important

crop, the grapevine represents a unique domestication history and sensitivity to environmental

changes and signals. For example, many grape species undergo a period of endodormancy, or

a non-growth phase, that typically corresponds to an inactive winter rest and is brought on

by conditions within the plant itself. Endodormancy regulation of grape buds is necessary for

plant survival during inclement winter conditions. The endodormancy phase is triggered by

the onset of a shorter photoperiod corresponding to the shorter days of winter in the Northern

hemisphere (Vergara and Perez, 2010; Kuhn et al., 2009; Perez et al., 2007; Noriega et al.,

2007; Fennell et al., 2005).

V. riparia is a species of grape that is cultivated in North America which is known for

its cold hardiness. The biological processes that V. riparia buds undergo at the onset of

endodormancy are not well understood, mainly due to small amounts of relevant tissue. Our

task in this project is to use multivariate methods to identify which genes, functional groups,

and pathways participate in endodormancy activities by examining the plant transcriptome

measured by Affymetrix Vitis Gene Chips (microarrays).

Multiple technologies exist that quantify the level at which genes are expressed. For the

past decade or so, microarrays (considered high-throughput technology) have been the tool

for that purpose. Of these, many different microarray platforms have been developed using a

wide range of design parameters including but not limited to oligo-nucleotide length, microchip

print technology, background fluorescence baselines, and oligo-nucleotide sequence selection.

4Author contributions: Van Hemert conducted and wrote the technical comparison portion with advice
and discussions with Ferrarini, Delledonne, Pezzotti, Fennell, and Dickerson. Van Hemert and Boggess co-
wrote much of the single-platform Affymetrix-based analysis, specifically the GO Over-representation analysis
portions. Van Hemert developed the ∆-based MANOVA statistics and conducted the pathway flow analyses.
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It is not uncommon to find several to thousands of experiments using different microarray

platforms on the same organism or tissue (Barrett et al., 2009). Meta-analysis, or pooled re-

analysis with increased statistical power, of such an organism requires some sort of integration

of the datasets generated by each platform (Xiong et al., 2010).

In the past, microarray platform integration has been of interest to medical researchers

because they sometimes need to increase power by merging different studies done on different

platforms with different patients in order to answer similar questions. The first problem in

platform integration is that there are usually genes uniquely measured by each platform. A

common solution is to omit those genes and join the experiments on the common genes mea-

sured, which are mapped to microarray oligos according to sequence similarity to the latest

gene models. Subsequent steps might integrate at different levels, with fluorescence intensi-

ties being the lowest level (Garrett-Mayer et al., 2008; Warnat et al., 2005; Shen et al., 2004;

Parmigiani et al., 2002), and platform-specific statistics (Rhodes et al., 2002) or gene sets (Choi

et al., 2003; Zenoni et al., 2010) being higher levels. The main problem is the trade-off be-

tween data level (lower is more precise) and confounded biological and platform effects, which

are less prevalent at higher data levels. Approaches to circumvent this problem range from

clustering all merged data to normalized observations against cluster averages (Shabalin et al.,

2008), to fitting merged data to models which attempt to accounts for platform effects (Choi

et al., 2003), to converting fluorescence intensities to platform-specific ranks or quantiles (Shen

et al., 2004). Platform integration methods are usually evaluated by calculating accuracy and

specificity rates when comparing results to common knowledge of a well-studied gene family

such as estrogen receptors in breast cancer studies (Tsiliki et al., 2009), leaving the specific

causes of errors to speculation; integration can be a form of benchmarking if the integration

method provides a metric for how well platforms integrate. Model-based approaches such as

Choi et al. (2003) and Xiong et al. (2010) are able to produce such metrics.

In more recent years, new methods appeared which measure gene expression using what are

considered ultra-high-throughput technologies. Next-Generation Sequencing actually observes

the nucleotide sequences of millions of segments from a sample which vary in length according
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to the specific technology. These reads are then assembled into longer segments using various

bioinformatics tools and eventually create a set of replicons from the biological sample. Other

tools are used to predict the locations and structure of gene models on the replicons. Deep

sequencing and RNAseq refer to heavy sequencing of short reads of RNA samples followed

by alignments of the reads to a pre-built genome. The depth to which reads overlap (called

coverage) indicates the level of expression of a particular region in the genome. Coverage for

a specified region has been quantified using the number of reads aligned to the region per the

region length in kilobases per the total number of aligned reads, reads per kilobase of exon

model per million mapped reads (RPKM) (Mortazavi et al., 2008).

Some platforms, like the new Nimblegen Vitis chips, were designed based on gene models

predicted from the genome and their probe positions are known. Other platforms, like the

Affymetrix 16k gene chip for Vitis, are based on older EST libraries and probes are placed

on the new genome using sequence alignments. Even conservative sequence alignments can

place probes incorrectly. Our other task is to use experimental data to identify Affymetrix

probes incorrectly placed on the genome and show how data from two or more platforms can

be integrated for more sensitive Next-Gen-like analysis of exon-level expression as well as refine

functional annotation based on experimental data.
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Results

Platform Integration for Exon Quantification

Alignment Filtering

We filtered Affymetrix probe alignments by fitting a mixed univariate normal model to the

correlation values and classifying pairs as ”false” when in the lower population and there is

low uncertainty (< .01). We can observe the filtered consensus alignments in GBrowse and

omit them from functional annotation transferred to lists of differentially expressed Affymetrix

probesets via gene models. With these data, we were able to filter 5,487 (2.75%) false

Affymetrix probe placements on the genome coming from 3,150 consensus alignments (Fig-

ure 5.1).

When we fit the multivariate linear model to our real data, we obtain estimates for the true

expression of individual exons. These estimates are called ”indirectly measured exons” and can

be added to the set of exons which are ”directly measured” by single probes fully contained

withing the exon. Depending on the genome coverage of the two expression platforms, we

cannot obtain an estimate for every exon in the genome; we only have estimates for exons

that are part of exon systems where the number of probes is at least as large as the number

of exons. Therefore, platform integration can improve exon coverage by creating more such

systems. In fact, the number of estimable exons for our integrated data set is larger than the

sum of the numbers of estimable exons for each platform’s data set fit separately (Figure 5.2).

Comparison to RNAseq data. To validate the exon expression estimations, we com-

pared them to RNAseq data using a separate data set where technical replicates were run on

both Nimblegen Vitis chips and transcript-sequenced using Illumina short-read sequencing. We

also compared the standard gene-level summarization of expression units with RNAseq data

(Figure 5.3. A small amount of correlation is lost when using our multivariate exon estima-

tions, but an increase in noise is expected when the focus shifts from the larger gene summaries

to more specific exon summaries (estimates) where there are one or more exon estimates for

each gene estimate. This is a small tradeoff in cases where exon expression is the desired unit
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Table 5.1 Transcription Factor Families

Family Odds Ratio p-value

Cluster 2

bZIP 9.3 0.00000

C3H 8.9 0.00000

CO-like 40.1 0.00000

Cluster 7

CPP 52.7 0.00000

NAC 4.2 0.00000

ERF 3.0 0.00000

C2H2 2.9 0.00004

bHLH 2.3 0.00038

of expression, ie alternative splicing detection. Further, exon estimates correlate with RNAseq

data as well as Affymetrix’ Human tiling array in (Agarwal et al., 2010), whose plots look

very similar to ours, including the lower-left region looking flat indicating zero correlation for

expression below the noise level.

Single-Platform Analysis of the Full Photoperiod-induced Bud Dormancy Data

We mined 770 dormancy-related genes (see Figure 5.4 for examples) from the data and

clustered them into 8 groups according to endodormant V. riparia expression patterns through

time (Figure 5.5). Functional annotations and pathways associated with different clusters

include cell wall restructuring, stress responses, and shift from energy use and growth to

energy storage in starch. Two of the clusters (2 and 7) likely contain transcription factors

(Figure 5.6). Each of these transcription factor-rich groups contain homologues to different

transcription factor families. Cluster 2 is enriched with bZIP, C3H, and CO-like transcription

factors (Guo et al., 2008). Cluster 7 is enriched with BHLH, C2H2, CPP, ERF, and NAC

transcription factors. See Table 5.1 for these lists of families along with odds ratios (proportion

in cluster to proportion in genome) and hypergeometric test p-values.
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Figure 5.1 The univariate model fit to the distribution of linked probe correlations (above)

and the positions of Affymetrix probes which fall into the lower population with

low uncertainty (below). Top-right shows the univariate 2-Gaussian model fit to

the top-right histogram in Figure C.4. The left mode is the population of poor,

zero-center linked probe correlations and the right mode is the population of linked

probes where the Affymetrix probe is correctly aligned. Top-left shows the plot

of uncertainty when attempted to classify a linked probe as good or bad, given

a correlation value (x-axis, same as top-right). We selected Affymetrix probes

from linked probes in the lower population with low uncertainty for removal from

chromosome alignments. Some examples are plotted in GBrowse in the lower three

plots.
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Figure 5.2 Estimability of exons improves when platforms are integrated. Red bars show the

number of estimable grapevine exons by unspliced microarray probes (”Directly

Measurable”) for each separate platform, Affymetrix (”Affy”) and Nimblegen,

and after integration by pooling and normalization. Blue bars show the number

of estimable exons by applying our probe-exon system model (”Indirectly Mea-

surable”). These are the exons missed by standard exon summaries because they

are only measured by spliced probes. Notice that the sum of two individual blue

bars is less than the blue bar after integration.
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Figure 5.3 Exon estimates using our probe-exon system model compare well with RNAseq

data. Points in the left plot are gene-level estimates and points in the right plot are

exon-level estimates using our multivariate model. Microarray values were RMA

normalized (including log-transformation) and RNAseq FPKM (Trapnell et al.,

2010) values were log-transformed. We would expect a decline in correlation using

our probe-exon system model due to a larger number of data points alone. Other

causes may include non-linearity in splicing effects and cross-hybridization.
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Figure 5.4 Five selected gene profiles from the 770 dormancy-related genes. Each probeset

has four profiles– one for each treatment level combination and lines plot repli-

cate means. We mined for probesets with V. riparia short-day (purple, dashed

lines) expression unique for all other treatments. Notice how V. riparia behaves

differently during short photoperiod in all of these representative examples.
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Figure 5.5 Centroids of gene expression profiles over the seven time points for the 770 gene

data set. Mean expression values were calculated from the values in the original

clusters (which themselves were median expression values over replicates) for each

time point for V. riparia under the short photoperiod treatment (blue). This cal-

culation was repeated with the corresponding V. riparia long photoperiod data

(yellow). Negative controls had 50% and 75% quantiles of 6.04 and 6.21 respec-

tively. No centroids exhibited expression levels in this range, meaning these genes

have non-zero expression levels. Of note are Cluster 1, which contains cell wall re-

structuring genes, Clusters 2 and 7, which probably contain transcription factors,

and Clusters 5 and 8, which contain energy use and storage genes, respectively.
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Figure 5.6 Each cluster was compared to a set of reference transcription factors from Plant-

TFDB (Guo et al., 2008) made up of transcription factors from Vitis vinifera,

Populus trichocarpa, Glycine max, Oryza sativa, and Arabidopsis thaliana using

BLASTP. Each series is one of the eight clusters and the x-axis is the expect-value

cutoff for hits as it is made less conservative. The (log-scaled) y-axis shows Fisher’s

Exact Test p-values for the null hypothesis that the proportion of BLASTP hits in

the cluster equals that of the entire genome. Clusters 2 and 7 reach the most sig-

nificant p-values meaning they may represent transcriptional regulation patterns.
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Discussion

Platform Integration

Microarray platform integration can improve exon coverage using our probe-exon system

model. This can be useful if data exist for the same treatments on different platforms and

either the goal is to integrate and summarize or the goal is to compare the platforms at the

exon level. It also provides a model which takes advantage of spliced microarray probes,

conferring greater flexibility in microarray design; spliced probes become an asset instead of

a problem to be avoided. The probe-exon system model also accommodates overlapping gene

models as well as cross-hybrization events between probes by accounting for the distribution

of sample oligonucleotide fragments across multiple probes. Future work includes investigating

non-linear cross-hybridization relationships between probes and exons for even more flexibility

in microarray design.

Dormancy-related Genes

In this study, we successfully applied and adapted multivariate methods to effectively reduce

a high-dimensional data set to a collection of genes that demonstrate dormancy-related activity.

We then applied clustering methods to classify genes of interest into groups that exhibit similar

expression profiles over time. For each gene cluster, we searched for over-representation of

biological annotations, discriminated highly connected VitiCyc pathways, and compared them

to a reference set of transcription factors in order to form new hypotheses about cell response

to dormancy induction.

V. riparia genes in Cluster 1 show a spike in expression after about two weeks of

short-photoperiod, while expression is relatively constant during the longer photoperiod. Af-

ter about one month of short photoperiod, these genes’ expression drop well below their long

photoperiod levels. Overrepresented annotations in this group include lipid transport, carbo-

hydrate metabolic process (Biological Process); Hydrolase activity, polygalacturonase activity

(Molecular Function), and integral to membrane (Cellular Component) (Table C.4). Plants
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experience variation in photoperiod during the growing season, and must decide whether the

variation is due to growing season weather, or season change in Autumn. This cluster shows

that a strong transcriptional response occurs after about two weeks as the decision is made

that it is, in fact, time to enter dormancy. Pathway flow analysis also showed an initial spike

then decline in both energy use and cell wall activity (Table C.5). The behavior of genes in

Cluster 1 appears to be some sort of signalling response. However, since a relatively low count

and percentage of Cluster 1 genes were found in our transcription factor reference (Figure 5.6),

it probably does not involve direct transcription regulation of other genes.

V. riparia genes in Cluster 2 behave in a relatively parallel manner, with a strong drop

in expression in the first few days, followed by a sharp increase for the rest of the experiment.

At day 1, gene expression is much higher during short photoperiod than long. Since all plants

were under the same photoperiod treatment (long photoperiod) prior to the time experiment,

this group may represent a response to stimuli related to the experimental process (technical

perturbations), which are unobservable without more information. We were unable to reject

the null hypothesis of no enriched GO annotations for any genes in this group. The same is true

for pathway flow analysis at the 95% confidence level with Bonferonni correction. However, a

relatively high percentage of the genes in Cluster 2 are highly homologous to our transcription

factor reference set suggesting that Cluster 2 might contain transcription factor genes (Figure

5.6). Behavior similarity to Cluster 8 indicates Cluster 2 may contain the transcriptional

regulators of genes in Cluster 8.

V. riparia genes in Cluster 3 also showed approximately parallel time profiles under

long and short photoperiod, with significantly lower expression during short. Overrepresented

annotations in Cluster 3 include photosynthesis terms (Biological Process); glyceraldehyde-3-

phosphate dehydrogenase, NADP oxidoreductase, FMN binding, transcription repressor ac-

tivity (Molecular Function); and photosystems terms (Cellular Component) (Table C). Since

we conducted tests for stronger photoperiod effects in V. riparia than Seyval, the difference

in profiles we see for V. riparia is larger than any difference that exists between photoperiod
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treatment in Seyval ; the photosystems in V. riparia are more sensitive to changes in photope-

riod. This might be necessary to recognize the environmental signals to enter dormancy. In

addition we noticed that these photosynthesis genes decreased expression over the time course

under the long photoperiod treatment, while we would expect that it is constant. Further

investigation with a pathway flow analysis showed (without Bonferroni correction) that gene

expression for enzymes that catalyze many energy storage pathways are shutting down during

the throughout the experiment (Table C.7). It remains to be discovered why these genes also

decrease expression under the long photoperiod treatment.

For V. riparia genes in Cluster 4, which shows a sharp drop in expression for short

days when compared to long days, we were unable to reject the null hypothesis for any anno-

tations. However, pathway flow analysis without Bonferroni correction results in a short list

of pathways including 13-LOX biosynthesis and phospholipases. This could be due to an over-

representation of phospholipase and lipoxygenase enzyme-coding genes in the cluster. It might

also contain unknown transcription factors, as Figure 5.6 shows a relatively high percentage

of Cluster 4 genes are homologous to our reference transcription factor set. Further, only five

of the 61 genes in Cluster 4 existed in VitiCyc at the time of analysis.

Cluster 5 behavior is similar to Cluster 3 and pathway flow analysis shows similar

redox pathways (Table C.9). Overrepresented annotations include acid phosphatase activity,

lipoxygenase (Molecular Function); apoplast, cell wall, and integral to membrane (Cellular

Compartment) (Table C.8). It is known that zinc inhibits cell wall acid phosphatases. While

not statistically significant, we did observe several genes annotated as zinc ion binding in

Clusters 2 and 4, where V. riparia genes exhibit higher expression during short photoperiod

than long for roughly the first two weeks. This happens to be roughly the time at which

Cluster 5 genes (over-representing acid phosphatase) begin to decrease in expression. It is

possible that some underlying mechanism uses zinc to regulate acid phosphatases as V. riparia

enters dormancy. Acid phosphatase activity is associated with the NADP+ salvage pathway in

VitiCyc (Van Hemert et al., 2010), and Cluster 5 seems to exhibit a relationship with Cluster
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8, described below.

In Cluster 6, V. riparia genes steadily increase expression at a faster rate during short

photoperiod than long, for about one month, then become roughly equal after 42 days. We

were unable to reject the null hypothesis for GO term enrichment on genes in this group. We

able to discriminate interesting pathways using the Pathway Flow tool including resveratrol

biosynthesis, which is associated with biotic and abiotic stress, and wax esters biosynthesis

(Table C.10).

V. riparia genes in Cluster 7 show a clear spike in expression around two weeks

after short photoperiod begins which does not occur during long photoperiod. These genes

then switch off during the rest of the time series, while, during long photoperiod, they re-

main relatively constant until day 42. Overrepresented annotations in this cluster include

phenylpropanoid metabolism, lipid transport, chromatin and nucleosome assembly, and cell

wall organization (Biological Process); structural constituent of cell wall (Molecular Function);

extracellular region, nucleus, chromosome, chromatin, and nucleosome (Cellular Component)

(Table C). This suggests that V. riparia bud cells increase chromatin production after about

two weeks of short photoperiod treatment and proceed to pack their DNA to prevent further

growth and enter dormancy. After about three weeks, these genes follow a sharp decline in

expression, which may be caused by the dormant state, when excess DNA packages is no longer

necessary. This support recent findings in Horvath (2009). Since VitiCyc lacks gene regulatory

information, our pathway flow analysis cannot check the chromatin and nucleosome GO anno-

tation results. However, it did detect cell wall-related pathways (Table C.12). A relatively high

number and percentage of members of Cluster 7 also showed homology to our transcription

faction reference set (Figure 5.6). Behavior similarity to Cluster 1 indicates Cluster 7 may

contain the transcriptional regulators of genes in Cluster 1.

Lastly, V. riparia genes in Cluster 8 increase in expression over the time course.

Overrepresented annotations in this group include RNA polyadenylation, response to oxida-
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tive stress (Biological Process); chitin binding, chitinase, antioxidant activity, peroxidase activ-

ity, phosphorylase, vitamin binding, and polynucleotide adenyltransferase activity (Molecular

Function) (Table C.13). The overall function of genes in Cluster 8 is to respond to oxidative

stress. Cluster 5 contains genes involved in recycling of energy molecules like NADP+, which

results in production of antioxidants. We propose an inverse relationship between Clusters

5 and 8 where bud cells adapt to an energy system change seen in Cluster 5 by protecting

themselves from oxidative damage using mechanisms represented in Cluster 8. Pathway flow

analysis reveals energy storage pathways including sorbitol degradation into D-fructose and

starch biosynthesis (Table C.14).

Likely transcription factor clusters include Clusters 2 and 7 because they reach the

most significant hit-enrichment p-values in Figure 5.6. Besides using cluster behavior to hy-

pothesize which clusters are regulated by these respective transcription factor groups, we can

use their functional annotation to explain the difference expect value cutoffs at which each

cluster reaches high significance. Cluster 2 reaches low p-values around very conservative ex-

pect value cutoffs (1e-100) while Cluster 7 reaches low p-values at higher, less conservative

cutoffs (1e-20). Cluster 2 is not well annotated, but Cluster 7 is enriched with chromatin

remodelling-related GO annotation. The transcription factor clusters also map to different

transcription factor families and have expression patterns similar to other non-transcription

factor clusters; Cluster 7 may represent the transcriptional regulators for the cell wall reorga-

nizing members of Cluster 1 and Cluster 2 may represent the transcriptional regulators of the

energy-storage-related genes in Cluster 8. Future work includes closer examination of these

putative transcription factors and their families along with promoter binding site detection of

their respective response cluster members.

Our results provide insight into possible cellular mechanisms that occur at the onset of

grape dormancy, by investigating known biological processes related to overrepresented anno-

tation as well as examination of possible experimental variation within a treatment type over

time are necessary, we proposed biological explanations for our computational results. These

explanations are the beginnings of new biological models for the underlying mechanisms during
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photoperiod-induced bud dormancy in V. riparia. We observed transcriptional responses to

environmental signals as well as different groups of genes responding to one another. Lastly,

we have shown that GO term enrichment and pathway flow analysis can complement each

other in hypothesis generation. Further, our results detected pathways in VitiCyc that should

be removed because they do not occur in plants.

Future work requires re-clustering of the genes using a higher K value in order to glean

information about more intricate variations in expression profiles. Although we chose 8 clusters

for this project because it allowed for demonstration of data trends and minimized cluster

overlap, a much larger k is suitable for identifying smaller sets of genes that are involved in

the same process or are subject to the same regulatory mechanisms. Smaller clusters will also

be capable of more precisely differentiating between gene expression profiles and we can merge

clusters at our discretion.

We also plan to examine locations of genes in each cluster on the V. riparia genome

using our extensive web-based annotation system, which contains an interconnected GBrowse

and annotation BioMart. Recall that our data actually measures probes, or transcripts that

are portions of genes. Physical proximity of probes on the genome and correlated expression

profiles can suggest that they belong to the same gene. This exploration may also identify genes

that are co-transcribed and alternative splicing events. Currently this effort has produced an

experiment-wide information system at http://vitis.student.iastate.edu/VV18/ with cluster

behavior plots and cluster gene lists which link to both GBrowse views of gene locations and

annotations in our BioMart database.

http://vitis.student.iastate.edu/VV18/
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Methods

Six biological replicates from each genotype (Seyval and V. riparia) were grown in a green-

house under fixed conditions. Of each group of six, three were grown with a 13 hour (short)

photoperiod and the other three were grown under a 15 hour (long) photoperiod. Each repli-

cate was sampled at seven time points: days 1, 3, 7, 14, 21, 28, and 42. All plant specimens

were two to six year old vines. Prior to applying the photoperiod treatment, all plants were

grown under long day conditions until all vines reached 12-15 nodes. Vines were then random-

ized into groups for photoperiod treatments. Temperature was maintained at 25±3 during

the day and 20±3 at night for all treatments. Samples were extracted from the plants using

a novel bud RNA extraction technique (Anne Fennell, unpublished). Microarray experiments

were performed for each RNA sample using GeneChip Vitis vinifera (grape) by Affymetrix.

This experiment, performed in 2007, was repeated in 2008 using the same replication. These

two years will be referred to as ”year 1” and ”year 2”. The shorter photoperiod (13 hours

of sunlight per day) is intended to simulate the condition of approaching winter - the time

at which the plant enters endodormancy. The longer photoperiod (15 hours) is used as a

baseline from which we measure the effect of the shorter period. To differentiate between

genetic activity related to endodormancy and other activities (e.g., photosynthesis), another

grape species, Seyval, was examined. Seyval is a white wine grape plant that does not enter

endodormancy. By collecting data for both cultivars, it is possible to identify differentially

expressed genes across the photoperiod treatments, and then extract the subset specific to V.

riparia for further analysis of importance to endodormancy.

The entire experiment for both years resulted in 167 Affymetrix microarray hybridizations

because one replicate sample was accidentally lost or destroyed. Each Affymetrix V. vinifera

microarray platform contains 16436 probes in all, made up of transcripts from V. vinifera as

well as transcripts from other Vitis species, based on a large expressed sequence tag (EST)

database in 2003. Additionally, the microarray platforms have positive and negative controls,

which are constantly expressed and not expressed, respectively, for all samples.

All Affymetrix data were downloaded from the Plant Expression Database (PLEXdb.org)
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(Wise et al., 2007), experiment VV18. At the time of this project, the data are not published

and remain available only to PlexDB user accounts which are part of the Fennell-led study.

Platform Integration Technical Study

Before the single-platform Affymetrix results, the first part of this work entailed a technical

comparison of the data based on a subset of the data points where samples were hybridized

on Nimblegen ”MD” Vitis and Affymetrix Vitis platforms in technical replicates (Table 5.2).

This preliminary technical study resulted in a better functional annotation for interpretation

of the full Affymetrix results plus a new model for platform benchmarking and integration.

Table 5.2 Existing data points for the two microarray platforms.

Day 21 Day 28 Day 42

Long Days 3 Affy

3 MD

- 3 Affy

3 MD
Short Days 3 Affy

3 MD

3 Affy

3 MD

3 Affy

3 MD

Selecting Perturbed Probes

We selected perturbed probes on each platform by comparing their Coefficients of Varia-

tion (CV) to that of the respective platforms’ selected controls. We selected 32,024 (12.2%)

Affymetrix probes and 11,287 (10.0%) Nimblegen MD probes (Figure C.2).

Linked Probes

Two linked probes are expected to similar expression patterns under the same treatments

based on their positions in the genome. We link probes across platforms when they share the

same exon. We can model and visualize the these links with a graphical network where nodes

are probes and edges link linked probes (Figure C.3).

We examined Affymetrix-MD linked probes where both the unspliced 60-bp MD and 25-bp

Affymetrix probes share an exon in the gene models. True linked probes should be correlated

and were selected using empirical FDR-corrected p-values from 10,000 random linked probes’
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correlation values. For 8,962 (46.6%) of the linked probes, we reject the null hypothesis that

the Affymetrix probe is misaligned to the genome where either Affymetrix or MD is perturbed

at the 95% confidence level (Figure C.4).

Normalizing for Integration

In order to integrate expression values from different platforms, we must eliminate any

platform effect while maintaining the treatment effects. We mean-centered and mean-scaled

all probes using Level Scaling (van den Berg et al., 2006) (Equation 5.1). We then fit both

a ”full” linear model with a platform effect (Equation 5.2) and a ”reduced” model without a

platform effect (Equation 5.3). We tested how much the fit improved under the full model.

Level Scaling removed the platform effect completely (Figure C.5).

x̂icdpr =
xicdpr − x̄ic···

x̄ic···
(5.1)

x̂icdpr = µi + τic + αid + βip + εicdpr (5.2)

x̂icdpr = µi + αid + βip + εicdpr (5.3)

i = 1 . . . 2024 (”true” linked probes)

c = 1 . . . 2 (platforms)

d = 1 . . . 3 (days)

p = 1 . . . 2 (photoperiods)

r = 1 . . . 3 (replicates)

Integration using a Swappable Gene Prediction model

With continued development of new gene expression detection platforms, quantifying ex-

pression with respect to gene models is non-trivial. From older platforms such as cDNA

microarrays to short-read-based probe chips to transcriptome sequencing, different platforms

measure different units in an attempt to measure the same thing: gene expression. When we

have a reference genome we can place measured probes or reads on specific genome positions,
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but there are often multiple solutions. Further complication comes from incorporating exper-

imentally supported and predicted gene models. This systems approach to gene expression

quantification can be modeled with four variable, or swappable, levels of information: 1) a

genome, 2) base-specific expression levels, 3) gene model predictions, and 4) functional anno-

tation (Figure 5.7). For each combination of the four levels, expression data from different

platforms are integrated into meta-probes and quantified with respect to different gene models

and compared for biological interpretation including alternatively spliced genes. We would like

to be able to swap gene models and transcriptomics platforms in and out of our interpretation

system. The problem is that different gene models will align with probes differently, causing

misinterpretation of gene splicing and expression, or missing it altogether.

Figure 5.7 We would like to be able to mix and match expression platforms and gene models.

If we assume the genome assembly and microarray probe alignments to positions

on that assembly are relatively static (do not change more often then every few

years), we seek the ability to interpret expression quantification from the probes

in the context of any gene model prediction and its accompanying functional

annotation.

Probe-Exon Systems. A Probe-Exon System is a small network of exons linked by

probes which overlap them. In a probe-exon system network, exons are nodes and probes are

edges linking the nodes (Figure C.6).

For a given probe-exon system, if we assume that the observed fluorescence of a probe

equals the weighted sum of the exons which it overlaps, we can often fit a linear model to

the data using Multivariate Multiple Regression and Least Squares optimization (Equations

5.4-5.8).
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m = 1 . . .Mtreatments

n = 1 . . . Nprobes in system

w = 1 . . .W exons in system

Xnm = the RMA-normalized fluorescence of probe n under treatment m

Ynm
(0) =

Xnm − X̄n·
X̄n·

(Level-scaling (van den Berg et al., 2006)) (5.4)

Y(n∈Υ)m =
med(YPm)

coverage of P on w
(5.5)

where Υ is all unspliced probes, w is the exon of probe n,

and P is the set of all unspliced probes on ξ

Znw =
coverage of probe n on exon w

total coverage of probe n
(5.6)

[Y ]N×M = [Z]N×W [β]W×M + [ε]N×M (5.7)

ˆ[β]W×M = (Z ′Z)−1Z ′Y (5.8)

Single-Platform Analysis of the Full Photoperiod-induced Bud Dormancy Data

Data Normalization

The Robust Multi-array analysis (RMA) (Irizarry et al., 2003a) algorithm is used for back-

ground correction and normalization, and median polish (Irizarry et al., 2003b) for probeset

summarization. After RMA, the data is structured as a 167 × 16436 array of log-transformed

probe abundance data, where 167 is the number of hybridizations and 16436 is the number of

probes (with controls removed).

To satisfy a full factorial, model-based analysis, the missing hybridization was imputed by

calculating the mean of the existing two replicates for each gene and treatment combination.

Specifically, each probeset has only two hybridizations from Seyval under the 15-hour (longer

days) treatment at day one. The third imputed replicate value for each probeset was added

for each probeset after RMA normalization and summarization.

For our purposes, a non-zero year effect (calculated using Equation 5.9) is not biologically
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interesting, but prohibits pooling of replicates from each year; Visual inspection of the his-

tograms in Figure C.7 reveals that all gene-treatment combinations exhibit a consistent year

effect. There is a slight leftward skew that may be explained if each distribution is actually

the sum of two distributions; a major population of genes with a non-zero year effect centered

below zero, and a minor population of genes with year effect centered at zero. In order to pool

replicates across years, we adjusted all values from year 2 according to Equation 5.10.

yigpd = xigpd1· − xigpd2· where yigpd is the year effect for the ith probe-

set of the gth genotype under the pth pho-

toperiod treatment measured at the dthday,

and xigpdyr is the RMA normalized fluores-

cence value for the ith probeset of the gth

genotype under the pth photoperiod treatment

measured at the dthday in the yth year and the

rth replicate.

(5.9)

x
(cor)
igpd2r = xigpd2r + yigpd where yigpd and xigpdyr follow Equation 5.9

and x
(cor)
igpd2r is the year-effect-corrected xigpdyr

(5.10)

Data filtering

In microarray data analysis, scientists traditionally apply two initial filtering strategies:

filtering by low absolute value and filtering by low variance. Typically, both filters involve some

arbitrary cutoff (e.g., bottom 20 percent of genes) to determine which genes will be excluded

from further analysis. Removing genes with low absolute value is motivated by inaccuracies in

microarray experiment measurements for probes with intensities near zero. Removing genes

with low variance across experimental conditions will eliminate genes from the data that are

not likely to be involved in biological processes related to the organism response of interest.

These are considered ”uninteresting” genes given the motivation of the study (van Iterson

et al., 2010).
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For our microarray data, instead of employing these filters, we propose using the control

probe data for filtering genes. Our method begins by examining the variation that exists

in control probes. The control probes on the microarray platform consist of positive controls,

corresponding to genes that are always ”on”, and negative controls, corresponding to sequences

that do not exist in these species and are therefore always ”off”. Because of the consistent

behavior of the controls, it is possible to inspect the variance across our experimental conditions

and interpret this as experimental error or microarray platform noise. Now, considering every

gene on the chip, if its variance is similar to the technical noise, we are unable to attribute

behavior to any treatment and the gene should be eliminated from further analysis.

The Affymetrix Vitis gene chip contains 166 control probesets including both negative

controls which are known not to match any Vitis genes as well as positive controls which

are known to be relatively constantly expressed in all or most Vitis plant cells. The negative

controls are based on a Bacterial Artificial Chromosome (BAC). The positive controls are based

on highly conserved actin genes which are expressed similarly for all cells. Visual inspection

of boxplots in Figure C.8 for expression of control probes allows for identification of negative

and positive controls based on their mean expression values. The positive control group was

used as a model for the error variance due to the microarray platform. This subset was chosen

because the variability of the positive controls was larger than the variability of the negative

controls; a difference that may be a consequence of increased measurement error for larger

probe intensities. Because we are interested in genes that are expressed under at least one

experimental condition, it is most appropriate to use the larger variability of the positive

controls as a criterion for filtering.

Inspecting multivariate normality for 16436 distributions is far from trivial. However, using

the positive controls, we can inspect the multivariate normality of technical noise for expressed

genes. To do this, we first applied a data reorganization of the positive controls. Initially,

each of the 20 positive controls were measured 167 times, plus 1 imputed measurement. We

rearranged the data matrix of positive controls to a (20∗6 = 120)×(168/6 = 28) matrix where

each row is a single replicate.
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The Quantile-Quantile plot in Figure C.9 of statistical distances from each of the 120

positive controls to their 28-dimensional mean against theoretical χ2 quantiles shows relatively

good fit, except for some outliers in the tails. We conclude that the technical noise for expressed

genes follows something near a multivariate normal distribution. We can also safely conclude

that technical noise in any subset of the measurements on a gene follow multivariate normal

distributions, and technical noise on each measurement on a gene follow univariate normal

distributions.

Next, we calculated the sample variance, S2, for each of the 120 positive control replicates

by Equation 5.11 and used the resulting distribution of sample variances as a reference for

discriminating variable non-control probesets. We applied the same data reorganization to

all non-control probesets in order to compare their variances across treatments to that of the

positive controls. Each non-control probeset has six replicates under all treatments, but we

wish to calculate a single representative variance for each probeset. To do this, we calculated

the mean variance of all six replicates for each probeset using Equation 5.12.

S2
controlir =

1

n− 1

∑
g,p,d

[(xigpdr − xi···r)2] (5.11)

n = 28 (the sample size)

S2
controlir = the sample variance for the ith control probeset in the rth replicate

xigpdr = the RMA normalized fluorescence value for the ith control probeset

of the gth genotype under the pth photoperiod treatment measured

at the dthday for the rth replicate.

S2
i =

1

R

∑
r

[ 1

n− 1

∑
g,p,d

[(xigpdr − xi···r)2]
]

(5.12)

= the mean sample variance for all R = 6 replicates of the ith test

probeset

S2
controlir

(V R)
=

1

n− 1

∑
p,d

[(xi1pdr − xi1··r)2] (5.13)

S2
i

(V R)
=

1

R

∑
r

[ 1

n− 1

∑
p,d

[(xi1pdr − xi1··r)2]
]

(5.14)

A principal components analysis at this stage (not shown) revealed sufficient separation
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between genotypes, but other effects were not easily identified in the first few directions of

variability. This is probably because applying both Equations 5.11 and 5.12 across both geno-

types resulted in an over-representation of probesets whose targets exist in one genotype and

not the other and do not necessarily respond to the other treatments. Many of these probesets

(data not shown) exhibit large variances, but only due to the genotype factor, which is not of

biological interest here. To avoid these genotype-specific probesets, our filtering used adjusted

versions of Equations 5.11 and 5.12 where a stronger filter was applied to the data: instead

of filtering based on variance across all experimental conditions, we filtered genes based on

variance across only the treatments to V. riparia. This modification to the filter reduces the

effect of genotype and eliminates genes that did not vary across the photoperiod treatments

within V. riparia. By using Equations 5.13 and 5.14 for the controls and non-controls, re-

spectively, we selected only probesets with high expression variance as V. riparia specifically

entered endodormancy.

A plot of the number of genes versus their quantile relative to the positive control variance

data revealed intuitive trends in the data. As shown in Figure C.10, most of the genes exhibited

very little variability across experimental conditions and could quickly be eliminated from

analysis. For our purposes, we have selected all genes above the 75th percentile in this figure.

This corresponds to 1304 genes, or approximately the top 7.9 % of the original set of genes.

Multivariate analysis of variance

In an effort to mine biologically meaningful genes out of the full set, we conducted a series

of Multivariate Analyses of Variance (MANOVA) on each of the 1304 filtered probesets. An

interaction effect between genotype and photoperiod is biologically relevant because we are

searching for genes perturbed by the short photoperiod due to dormancy processes and not

photosynthetic processes. To test this, we applied a 2-way MANOVA to each probeset with

the multivariate linear model in Equation 5.15. Notice that a separate model is fit to each

probeset, which is represented by a 24 treatments × 7 time points matrix of observations.

The model assumes multivariate normality, which can safely assume for chip effects, but not
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necessarily other effects. It also assumes homogeneous variance-covariance matrices between

each treatment group. We neglected to formally test for these features for any probesets and

assume they are true.

Each gene is a 24 × 7 matrix

~xigpr = ~µi + ~τig + ~βip + ~γigp + ~εigpr

i = 1 . . . 1304 (probesets)

g = 1 . . . 2 (genotypes)

p = 1 . . . 2 (photoperiods)

r = 1 . . . 6 (replicates)

0 =
∑
g

~τig =
∑
p

~βip =
∑
g

~γigp =
∑
p

~γigp

~εigpr ∼ iidNp(~0,Σi) (5.15)

We used Wilk’s Lambda, a common MANOVA test statistic, calculated with Equation

5.16, to compare the sums of squares and cross products for the interaction (SSP int) and

residual error (SSP res). We compared its Bartlett-scaled test statistic to a χ2 distribution

with (2− 1)(2− 1)7 = 7 degrees of freedom. Unfortunately, this method was unable to further

discriminate genes; a significant interaction effect (~γigp in Equation 5.15) was not found for

any gene. This may be due to the small number of replicates (6).

Λ =
|SSP res|

|SSP int + SSP res|
,Λ→ 0⇒ strong interaction effect (5.16)

We altered our approach to mining dormancy-related genes from the 1304 high-variance-in-

V. riparia genes by applying a One-way MANOVA (Equation 5.17) to each gene, but for the

two genotypes separately. This would result in two test statistics for each gene which could be

compared with the goal of selecting those with a more significant test statistic in V. riparia.

The new test statistic, Delta (∆), compares the time-multivariate photoperiod effect, which is

measured using Equation 5.18, for Seyval and V. riparia by taking the log-ratio of one to the

other, as in Equation 5.19.
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Each gene is a 12 × 7 matrix

fit twice (once for each genotype)

~xigpr = ~µi + ~βip + ~εigpr

i = 1 . . . 1304 (probesets)

g = 1 . . . 2 (genotypes)

p = 1 . . . 2 (photoperiods)

r = 1 . . . 6 (replicates)∑
p

~βip = 0

~εigpr ∼ iidNp(~0,Σi)

(5.17)

Λ =
|SSP res|

|SSP phot + SSP res|
,Λ→ 0⇒ strong photoperiod effect (5.18)

∆ = ln
ΛV R
ΛSV

,∆ ↓⇒ stronger photoperiod effect in V. riparia (5.19)

Like the variance filtering, we compared Delta for each gene to the distribution of Deltas

from all 166 controls. We were able to use all controls because expression value location and

scale do not affect the Delta statistic, and Delta is calculated for each probeset independently.

While we neglect to attempt to show it analytically, Delta for our controls clearly follows a

Normal distribution, when checking the Q-Q Normal plot in Figure 5.8. We also see non-

centrality in the histogram of control Deltas. There seems to be some factor causing generally

stronger photoperiod effects in Seyval. Since we are examining controls, there should only be

a technical (not biological) explanation for this. There may be some feature of Seyval that

causes its RNA to amplify and hybridize more variably than V. riparia and is not corrected

by our normalization technique. We estimated the Delta sampling distribution’s parameters

(µ and σ) with mean and sample variance of the controls Delta sample, respectively.
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Figure 5.8 We used the sample of controls to estimate the parameters of the ∆ sampling dis-

tribution. For each of these controls, the ∆ statistic was calculated using Equation

5.19. The histogram of ∆ statistics for all controls is on the left and the Normal

Quantile-Quantile plot is on the right. The sampling distribution of ∆ very closely

resembles a Normal distribution with mean 0.9 and variance 0.93. We used this

distribution to test significance (in the lower tail) of the experimental ∆ statistics.

For genes with Delta values in the lower tail of the Normal distribution with parameters

estimated by the controls, we can reject the null hypothesis that their photoperiod effect is

similar in both genotypes. We calculated p-values for the 1304 genes, shown in a histogram in

Figure 5.9. False Discovery Rate was corrected into q-values according to (Storey, 2003). Both

distributions appear very appropriate for mining genes for perturbations; the distribution of

p-values is generally uniform, except for a tall mode near zero, made up of the sizeable set

of genes perturbed by the treatments ((Fodor et al., 2007)). There is also a smaller upper

mode, indicating a second set of genes which were perturbed by short photoperiod more in

Seyval than in V. riparia. 770 Vitis probesets’ Delta values fall below the fifth percentile of

the sampling distribution. These are the genes perturbed by short photoperiod more in V.
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riparia than in Seyval, which, after our filtering and multivariate testing, we can assume are

at least mostly dormancy-related genes. Figure 5.4 plots five of the 770 gene profiles, showing

that we have detected genes perturbed by photoperiod in V. riparia.

Figure 5.9 Both p-values and FDR-corrected q-values form good histograms, where many

probesets are of the null hypothesis (not dormancy-related), but many form a spike

near zero, represented the set of dormancy-related probesets. The small spikes on

the upper tails represent probesets measuring genes which are actually perturbed

by photoperiod more in Seyval than V. riparia. We analyze the lower-tail genes

in this work.

K -means clustering

We performed K -means clustering using the median expression value of V. riparia samples

given a short photoperiod treatment for each time point per gene. The use of medians for all

replicates was to prevent outliers from strongly influencing the expression summary for each

gene. This results in a 7 × 770 data matrix where the number of rows corresponds to the

number of time points (days 1, 3, 7, 14, 21, 28, and 42) and the number of columns is the

number of previously identified dormancy-related genes (Figure 5.5).
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The goal of clustering genes by their expression over the time series is to identify groups

of genes that exhibit similar behavior in V. riparia with a short photoperiod treatment. Bio-

logically, genes that are highly correlated with each other are often involved similar functions.

They may also be subject to the same regulatory processes or co-transcribed.

K -means clustering uses an iterative algorithm to assign objects to k clusters such that

the distances from objects within a cluster to its center is minimized. Both k, the number of

clusters, and the distance metric are user-specified. Correlation was the distance metric used

for our clustering because it captures the relation between genes that is most interesting for

our study. The choice of k = 8 was motivated by hierarchical clustering and silhouette plots

not shown.

Functional Analysis of the 8 Clusters

Biologically, it is of interest to explore functional and regulatory relations that exist within

groups of genes that are highly correlated. We used Gene Ontology (GO) (Ashburner et al.,

2000) annotations to investigate individual clusters and also search for overall biological sig-

nificance of the 770 dormancy-related genes.

Gene Ontology is a collection of controlled biological terms used to define gene products

properties. GO is comprised of three separate ontologies; Cellular Component, Biological Pro-

cess, and Molecular Function. Each forms its own network of terms to describe characteristics

of genes. Each ontology is constructed such that terms are nodes and they are linked by edges

that describe defined relationships (e.g., ”sigma factor activity” is a ”transcription initiation

activity”). The full collection of terms and links within an ontology forms a directed acyclic

graph. Each gene in the 770 data set was mapped to a GO identification number that corre-

sponds to GO annotation. Probesets were first mapped to the newest version of the Grapevine

genome produced by the French-Italian Grape consortium (Delledonne, 2009). Probeset con-

sensus sequences were aligned using BLAT (Kent, 2002) to all chromosomes in the genome

assembly. Then, probesets were mapped to predicted gene models by identifying probesets

and gene models which overlap by at least four bases. False hits from our technical correlation
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comparison were removed. Individual probes were then mapped to their respective positions

on the genome, according to their positions in the probeset consensus sequences. A compu-

tational annotation effort at the University of Padova (unpublished) has produced (among

others) GO annotation for the gene models, which were then attached to the genes’ respective

overlapping probesets. The mapping is not 1:1, and in many cases, many genes will have the

same annotation. In addition, approximately half of the 770 genes are not currently annotated

and cannot be included in the following data enrichment process.

In order to identify commonalities within clusters, we used a hypergeometric test to identify

any annotations that are overrepresented within each group. Benjamini and Hochberg False

Discovery Rate (FDR) correction was used to correct for multiple comparisons. Our criteria

for overrepresented categories was a test for the cluster versus the entire annotated network

for our organism. To say an annotation is overrepresented in a cluster is to reject the null

hypothesis that the ratio of genes in the cluster with that specific annotation to the size of the

annotated cluster is less than or equal to the ratio of all genes annotated with that specific

annotation to all annotated genes (an odds ratio). Because of potential bias in annotation for

each of the three ontologies, we chose to perform an individual test of significance per ontology

at the 90% confidence level. All tests were executed in Cytoscape (Shannon et al., 2003) using

the BiNGO plugin (Maere et al., 2005).

We also used our PathwayFlow web tool to discriminate VitiCyc pathways linked to the

genes in each cluster by entering the members of each cluster as a query list. VitiCyc lacks gene

regulatory relationships so we can only mine forward-direction query list successors. Members

of each cluster were also compared to a set of reference transcription factors from PlantTFDB

(Guo et al., 2008) made up of transcription factors from Vitis vinifera, Populus trichocarpa,

Glycine max, Oryza sativa, and Arabidopsis thaliana (Figure 5.6).
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APPENDIX A. GRAPEVINE DNA SEQUENCING PROJECTS

John L. Van Hemert 1, Jerome Grimplet 2, Marianna Fasoli 3, Alberto Ferrarini3, Massimo

Delledonne3, and Mario Pezzotti3, and Julie A. Dickerson1

On the transfer of functional annotation from one grapevine genome

assembly to another

During my work on Vitis related projects, multiple assemblies and gene model predictions

were created for the Grapevine. A major challenge was how to handle these different versions

of important information and the different analyses based on them.

Abstract

In 2007 a draft assembly and gene prediction of the grapevine was made public for the

scientific community. Since then, a new assembly which added more Sanger Sequencing reads to

the assembly pool produced a new genome version with superior base coverage. Before the new

version was created, much functional annotation was performed on the previous genome. In

order to most efficiently annotate the new version, it is important to leverage as much completed

work as possible by transferring ”8X” annotation to the ”12X” version of the genome. The

8X and 12X assemblies+predictions of the grapevine genome were compared to answer the

question, ”Can we uniquely map 8X predicted genes to 12X predicted genes?” Predicted genes

were compared between the two genome versions. Results show that while the assemblies and

gene structure predictions are too different to make a complete mapping between the two,

1Electrical and Computer Engineering, Bioinformatics and Computational Biology, Iowa State University,
Ames, Iowa

2Science Institute of Vine and Wine, Rioja University, Spain
3Biotechnology, University of Verona, Italy
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interesting structures appear which enlighten our understanding of the transition from one

genome version to the next.

Definitions

1. 8X: The grape genome published in 2007 by the French-Italian Consortium with average

8.4X assembly coverage (Jaillon et al., 2007).

2. 12X: The yet unpublished genome by the same group with increased coverage to 12X

average (Delledonne, 2009).

3. Gene prediction: the computational prediction of ORFs, genes, UTRs, and CDS for a

genome sequence.

4. Genome annotation: A mapping between predicted genes on a genome and functions,

locations, processes, mutants, homologs, etc.

5. Chip annotation: A mapping between microarray probesets and functions, locations,

processes, mutants, homologs, etc.

6. ”V0”: The assembly and gene prediction of the 12X genome by Genoscope. This will be

included with the initial 12X paper/publication.

7. ”V1”: The improved assembly and gene prediction of the 12X genome by the Padova

group. This will be released immediately after the ”V0” publication. This is also the

prediction the Nimblegen chips are based on.

8. ”Sister genes”: Two versions of the same gene from different assemblies. Not to be

confused with paralogs, which are homologous sequences from the same assembly.

9. ”Alignment series”: A group of local sequence alignments which appear to line up on a

diagonal line when plotted on their respective chromosomes’ positions.



www.manaraa.com

99

Methods

Megablast Megablast is an multiple sequence alignment tool designed for comparing

nucleotide sequences which differ due to sequencing errors. It operates similarly to BLAST,

but does not allow for affine gap penalties which attempt to model sequence indels in evolution

(Altschul et al., 1990; Zhang et al., 2000). Megablast was used to compare 8X and 12X

sequences where 8X sequences were the query set and 12X sequences were the subject database.

For the 12X prediction, ”V1” was used, which is the latest version of gene model predictions on

the 12X assembly. Default Megablast parameters were used because results would be further

filtered in a later step.

Entire predicted genes were compared The 8X and 12X assemblies are accompa-

nied by respective gene structure predictions, which contain different types of subsequence

predictions. These include genes, mRNAs, UTRs, introns, exons, and inter-genic spaces. Be-

sides comparing the full chromosome assemblies, any set of one or more of these subsequence

types could be used for comparison. Per the predictions, genes contain mRNAs, which contain

UTRs, introns, and exons. Since open reading frame can be generally defined as a region of the

genome which is potentially protein-coding, we can called these predicted gene regions ORFs.

In this study, because we are detecting sequencing variation and not evolution, these complete

ORFs were compared between the 8X and 12X assemblies + predictions.

Chromosomes were aligned Each assembly produced 19 ordered chromosomes plus a

twentieth unknown chromosome which contains contigs which could not be assigned to any

of the 19 chromosomes. Of these 20 chromosomes, many are accompanied by smaller part-

ner chromosome labeled as random. These random chromosomes contain contigs which were

assigned to the respective chromosomes, but could not be assembled in order with the other

contigs. Expectedly, the 12X assembly contains smaller unknown and random chromosomes.

Gene structure predictions were performed by Genoscope and the Padova group on all (or-

dered, random and unknown) chromosomes, producing ORFs to compare in all chromosomes.

However, some analyses, such as those considering position information, must omit the random
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and unknown chromosomes.

Sequence homology presents a Cardinality Problem Megablast results in a many-

to-many relationship between 8X and 12X ORFs. Hypothetically, the 8X prediction could

define a long gene on a specific locus, while slightly different assembly in 12X version could

cause a prediction of several separate genes spanning the same nucleotides. This results in

many 12X predicted genes aligning almost perfectly with the same 8X gene. Of course, the

reverse is also possible. Further, paralogous domains cause a confounding web of links between

sets of genes. The degree to which a gene is linked to multiple sister genes in the other version

is called cardinality. When we model the sister gene hits as a graph, where nodes are genes

and edges represent Megablast hits, we create a bipartite graph where one side is the set of 8X

sequences and the other side is the set of 12X sequences. Edges between the two sets indicate

sequence homology hits (Figure A.1).

Hits were ranked and bests were selected The cardinality problem can be ap-

proached by ranking hits for each gene and selecting the best hit out of many for a gene

with cardinality greater than one. This approach assumes that this best hit on a gene is the

only real match and should be assigned as the one and only sister gene. Ranking and selecting

best hits must be done ”in both directions.” That is, to assign the best hit for each gene in

one assembly version and then assigning the best hit for each gene of the other assembly out of

the remaining links. The resulting unique one-to-one mapping depends on which ”direction” is

ranked and selected first. For this study, the 8X genes were first ranked and selected because

this resulted in a larger number of unique one-to-one sister gene mappings. A measure of the

alignment coverage was used to rank and select mappings.

Alignment coverage was used for scoring It is assumed that a good pair of sister

genes will produce a local alignment which spans most of both gene sequences. When searching

for these cases, we can define a function of the megablast alignment results which reflects

alignment coverage. The function used for this study is simply a percentage comparing the
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Figure A.1 Cross-assembly mapping is a bipartite graph problem; if gene

models from one assembly on the left side are mapped to gene

models from the other assembly on the right side, we are bound

to find one-to-many and even many-to-many relationships.

length of the alignment region to the sum o the lengths of the respective hit ORFs. Indeed,

this reflects the same measure as the normalized bit score on which BLAST’s expect value

is based, but the alignment coverage score is more intuitive here. Results are similar if not

identical to using the bit score.

Results

Score distribution shows much noise When naively selecting best hits in both di-

rections, we have a set of 21461 unique one-to-one mappings between sister genes on any

chromosome (ordered, random, and unknown). Of these, 5182 pairs involve a random chromo-

some and 4109 involve an ”Unknown” chromosome. While these are the hits which had the
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best alignment coverage for each respective gene, the alignment coverage values are far from

perfect and reflect many false positives. Of this one-to-one mapping, we can plot a histogram

of the alignment coverage scores.

The histogram is actually the sum of two different distributions. The first is clear in the

left mode. This is a form of the Karlin distribution (Karlin and Altschul, 1990), which is

the distribution of random best sequencing alignment scores from false sister gene pairs. The

rightward mode is from a normal distribution folded at a maximum value of 100% alignment

coverage. This shows the distribution of alignment coverage scores from true sister genes. We

can draw the two separate distributions by eye. If we define a cutoff score around 85, we can

mark the areas which indicate the number of true positives, false positives, true negatives, and

false negatives (TP, FP, TN, FN, respectively). From this, it is clear that, at best, only a few

thousand of the mappings are correct (Figure A.2).

Gene order series are observed in alignments Despite poor structure in the sister

gene mappings based on alignment coverage, we can see interesting structure when considering

the Megalast hits with respect to gene position. A plot of the relative chromosome positions

in each of the 21461 unique sister gene pairs shows much structure. When sister pairs from

the same chromosome are color coded as such, we see many pairs in series along the diagonal.

This shows that sister genes are detected in line with their sisters on the other genome version.

Black points indicate sister gene pairs which come from different chromosomes. Many of these

do show series structure. Most of the black series are mapping from an 8X random or Unknown

chromosome to a 12X ordered one (Figure A.3).

3D plots show that high coverage scores indicate ”good series” We can plot the

sister gene pair positions along with a third dimension to visualize scores in this context. A 3D

view of the 21461 sister gene pairs shows that strong alignment coverages coincide with gene

order series (Figure A.4). On paper, the 3D visualization is difficult to interpret, but using

Ggobi (Swayne and Buja, 2004), the user is free to rotate the plot and see these signals.

Similar 3D plots were created for each of the ordered chromosome (Figure A.4). These
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Figure A.2 Distribution of Cross-platform MegaBlast hit scores. We see

the sum of two populations: false hits and true hits.

plots do not show unique ranked-and-selected sister gene pairs, but all Megablast hits where

both genes came from the particular chromosome plotted. Since the genes are not ranked and

selected, we clearly see low-scoring noise hits off the series and strong signals from the hits on

the series, which are generally along the diagonal. The shows that we need not manually or

computationally detect the sister gene pair series based using chromosome positions, which is

a non-trivial signal processing task. Rather, we only need to select high alignment coverage

scoring pairs. This partly validates the mass rank-and-select method for creating the unique

one-to-one mapping.

Gene order inversions are observed Some alignment position plots show one or more

sister gene pair series along a negatively sloped diagonal (Figures A.3 and A.4). These series
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Figure A.3 Cross-platform MegaBlast hit positions. The X-coordinate is

the relative position on the 8X chromosome and the Y-coordi-

nate is the relative position on the 12X chromosome. Colors

represent a hit between gene models on the same respective

chromosome. Black points are for hits between gene models on

differnent respective chromosomes.

indicate gene order inversions where a series of 8X genes are aligning with 12X sister genes

in the reverse order. Notice that these series show scores as high as the positively correlation

series.

Gene order inversions are at the assembly level Are these genes reversed in order

at the assembly or prediction level? In order to answer this question, an ad-hoc pipeline for

manual subsection of hits from the position plot in R-Ggobi was created. Using this pipeline,

sister gene pairs were selected from the negatively sloped series from the alignment position

plot for chromosome 12, which contains the most inversions. A Fisher test was conducted to

test the null hypothesis that the ratio of opposite strand hits is the same for two sets of hits: 1)

hits on the inversions and 2) all other hits. The test resulted in an immeasurably small p-value,



www.manaraa.com

105

Figure A.4 3D plots of respective relative chromosome hit positions plus a

third axis for alignment score for all hits (left) and for hits be-

tween 8X chromosome 1 and 12X chromosome 1 (right). Most

other ordered chromosomes show a similar pattern.

allowing confident rejection of this hypothesis and to accept the alternative that sister gene

pairs on inversions strongly tend to be opposite strand alignments. This indicates that the

inversions are at the assembly level and were probably caused by inadequate linkage mapping

in the 8X version (assuming the 12X is more correct). (Figure A.5).

Inversions are probably poorly assembled contigs in 8X Large assembly inversions

are probably caused by sequencing errors on the inversion flanks or ends. These errors are

probably caused by low coverage in these regions. A 3D plot where the third dimension is

the assembly coverage for 8X may show that the ends of the inversions have low values while

plotting the 12X assembly coverage may show better values in the same region. A plot where

the third dimesion show the difference between 12X and 8X coverage may show a similar signal.

Drastic changes in Chromosome 15 are observed Returning to the plot of all

ranked-and-selected sister gene pairs, notice that the chromosome 15 series begins midway

through the 12X assembly. In addition, the beginning of chromosome 15 in the 12X assembly

aligns best with a portion of chromosome 6 in the 8X assembly. While simple cis-inversions are
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Figure A.5 The cross-directional inversion alignment odds ratio shows that

inversion hits were opposite-strand alignments while non-inver-

sions were same strand (+) alignments.

minor side-effects of linkage mismapping, trans-inversions show a more severe and less recover-

able inadequacy in the 8X sequence. A similar alignment plot for full chromosome alignments

shows similar structure to the ORF alignment plots (Figure A.6). All 8X chromosomes were

Megablast’ed against all 12X chromosomes using the same procedure as the ORF comparison.

Only hits of length 2 kb or more were used because this reduced the number of hits from over

1.1e8 to less than 300000 as shown in the histogram of all chromosome hit lengths (Figure

A.6). Placing the resulting local alignments on a gbrowse (GMOD, 2010) track, we confirm

the tendency for inversion regions to align on opposite strands (Figure A.7).

Discussion

Visualization is important for comparative genomics Chromosome comparison is a large

scale pattern recognition problem. The best available tool for pattern recognition is often the

human mind. Therefore, visualization techniques are important for chromosome comparisons.

For this study, a the multivariate data visualization tool Ggobi was used in concert with the

sequence visualization tool Gbrowse. In particular, chromosome position plots of alignment
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(a) Chromosome alignments scores. (b) Chromosome alignments scores by positions.

Figure A.6 Distribution of full chromosome MegaBlast hit scores (A.6(a),

the red virtical line is the right-most value used.) When in-

specting these alignments using the 3D plot, we can see that

the 12X (labeled ”new”) chromosome 15 ORFs align well with

8X ORFs from chromosomes 15, 6, random 15, and random

Unknown A.6(b).

hits with a third score dimension conferred easy pattern recognition, while Gbrowse presented

smaller scale examples of the patterns detected.

A possible dynamic programming approach to series detection If there had not been such

a high correspondence between diagonal alignment series and high alignment coverage scores,

these series might have been computationally detected. One possible method for this is a mod-

ified Smith-Waterman dynamic programming approach. Instead of tracing a path through a

matrix of base pair alignments between two different sequences optimizing an overall align-

ment score, we would trace a path through a matrix of Megablast hits between two different

chromosomes optimizing an overall position correlation. The caveat is that the alignment score

can be calculated incrementally at the margin, adding base matches or gap one by one, and

hit position correlation must be re-calculated for each increment for all previously included

hits in the path trace, leading to a sort of inner dynamic programming problem. Future work

may entail implementing such an algorithm and testing is accuracy in marking the series of
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Figure A.7 We can see that full chromosome hits are opposite strand within

an inversion (top) and positive strand outside of inversions

(bottom).

alignment hits on the diagonals (or inversions).

Conclusion Creating a unique mapping between predicted 8X genes and 12X genes re-

quires consistent gene predictions between the two genome assembly versions. Apparently, the

12X assembly yielded such different sequences and gene predictions that most sister gene pairs

detected by the rank-and-select approach are random noise. Only a few thousand pairs are

clearly correct matches. These sister gene mappings can transfer previously curated 8X gene

functional annotation to a minority of the 12X genes. Due to severe differences between the

assemblies caused by low-coverage and linkage mismapping, the remaining 12X sequences must

be functionally annotated ”de novo” using the same pipelines used to annotate the 8X genes.

Processing DNA re-sequencing data

The purpose of this project was to investigate putative indel regions in Corvina genome

compared to Pinot Nior genome after Illumina resequencing.
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Background

A highly homozygous Pinot Noir was sequenced using Sanger technology for average read

coverage of 12X. A heterzygous Corvina cultivar was sequenced using Illumina technology and

the reads aligned to the 12X Pinot Noir reference genome. Read coverage for the Corvina (CV)

reads was compared to read coverage for the Pinot Noir (PN) reads. Coverage was generally

equal, but some areas showed much high coverage for CV than PN and others showed little or no

coverage for CV. The former are interpreted as possible PN regions that are duplicated in CV.

The latter are interpreted as possible deletions from PN to CV, also stated as genomic regions

that exist in PN but not CV. Regions were classified as CV Duplications, CV Deletions, or

Equal (insignificant read coverage difference). According to the data file defining these regions,

there are 747 CV Deletion regions and 156 CV Duplication regions.

Data was visualized using Gbrowse tracks

Four gbrowse tracks were created. The first track plots the read coverage difference values

and colors positive (more CV coverage than PN) values green and negative (less CV coverage

than PN) red. A second and third track show the regions where the read coverage difference is

far enough from zero to be significant in either direction and colored similarly to the plot. A

fourth track defines ”Unknown” regions that were nearly but not significantly different from

zero coverage difference.

Deletions refuted by Nimblegen chip data

To check the above putative deletion regions, genes which overlap the deletion regions were

checked in a current expression atlas study for CV done on the Nimblegen microarray designed

based on predicted gene models from the 12X PN genome assembly. The study currently has

20 organ x developmental stage combinations with three biological replicates each. Data was

discretized to a matrix of 0’s and 1’s where 1 indicates a gene is expressed higher than two

standard deviations above the mean expression of a pool of negative control probes in at least

2 of the 3 replicates. 0 indicates otherwise. If a gene is part of a true deletion, it should not be
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expressed in any of the 20 organ-stages. Surprisingly, the distribution of ”on-conditions” for the

putative CV-deleted genes shows that most are actually detected on the microarray (Figure

A.8). Only 270 of these putative CV-deleted genes were never detected by the microarray

analysis. GBrowse tracks were used to visualize the relationship between the putative Corvina

deletions and detected genes in the Fasili et al atlas study (Figure A.9). When plotting these

tracks on gbrowse along with the track mentioned above, one can easily see which putative CV

deletions are supported or refuted. Interestingly chromosome 1 contains many putative CV

deletions and there are no overlapping genes to support or refute them.

Figure A.8 Corvina genes detected in Fasoli et al atlas.

Functional annotation of the CV Indels

s Fasta sequence file were generated by extracting the PN genome regions defined by the

putative CV duplications and deletions respectively. Since there are 156 CV duplication re-

gions, there are 156 sequences in the duplication fasta file. For the deletions regions, only

regions were extracted which do no overlap a gene detected in the atlas study. This reduced
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the 747 putative deletion regions to 208 regions. These 208 regions were extracted from the

PN 12X genome and placed in a fasta sequence file. Each of these DNA sequence files were

compared to the REFSEQ database of plant proteins using blastx. As a first look at the re-

sults, a list was prepared for each class (deletions and duplications) of blastx hits which meet

the following criteria:

1. expect value < 1e− 20

2. not of Vitis

3. not a ”hypothetical protein”

4. not a ”predicted protein”

5. not an ”ORF”

6. not a Rice locus

Criteria 2-6 remove REFSEQ hits whose names are not meaningful. Many hits were re-

moved this way, but 2048 remain for CV duplication regions and 1237 remain for CV deletion

regions. These lists are too long to present here, but we can conduct a functional analysis using

these lists with our PathwayFlow web tool (Figure A.10). Using our tool, we find that those

genes both missing from and duplicated in Corvina grapes are involved in several pathways

known to produce the differences between wines, such as sugars and anthocyanins metabolism

(Table C).
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Figure A.9 GBrowse tracks for Corvina indels. The first defines the genes

which overlap putative CV deletions and were not expressed in

any of the 20 organ-stages. These genes support the putative

CV deletions. The second track defines genes which were de-

tected in at least one organ-stage. These genes are evidence of

falsely predicted CV deletions. (Top: Chromosome 1, Bottom:

Chromosome 3)
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Figure A.10 Forward pathway flow for Corvina deleted genes (left) and

duplicated genes in Corvina (right)
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APPENDIX B. ANNOTATION DATABASES FOR VITIS

During my work on Vitis related projects, necessity dictated central organization of new

annotation efforts by the community.

VitisMart: An Annotation BioMart for Vitis

Grapevine genetics has made large advances recently. After a draft assembly with 8X aver-

age coverage of the Pinot Noir genome was release and published in 2007 (Jaillon et al., 2007),

a second draft was developed by the same French-Italian consortium that has average coverage

of 12 Sanger reads and computationally predicted gene models on each of the chromosomes.

These initial gene models were called ”V0.” A subsequent set of gene models was predicted

based not only on sequence, but also on RNAseq data from a simple berry development ex-

periment (Delledonne, 2009).

In order to create a central, query-able resource for these and other functional annota-

tions, we created a BioMart (Smedley et al., 2009; Haider et al., 2009) database. BioMart

instances are a semi-automatic rearrangement of an existing database schema into an inter-

nal, de-normalized form used for a standard web, webservice, and programming interface.

Biomarts have a heirarchical organization where Databases contain Datasets and Datasets

contain Records, which can be filtered based on search criteria to provide lists of matching

Records’ attributes. We created a simple BioMart containing a single Database, which con-

tains a single Dataset, which contains Records of 12X V1 gene model functional annotation

from different sources including a mapping from VitisNet (Grimplet et al., 2009) 8X-based an-

notation to 12X V1 genes by Jerome Grimplet and the following annotations based on Giorgio

Valle’s lab’s annotation pipline on 12X V1 gene models:
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1. Gene Ontology terms

2. RefSeq (plants) proteins

3. Pfam domains

4. Prosite domains

5. UNIPROT proteins

A use case for mapping 8X genes to 12X V1 genes is presented in Figure B.1. The results

of BioMart query link to corresponding genes on our GBrowse server, which houses all tracks

used for this and other projects (Figure B.2).

VitiCyc: A Pathway Genome Database for Vitis

While the Plant Metabolomics Network (Lysenko et al., 2009) hosts a BioCyc database

for Vitis, it is not comprehensive and lacks the 12X V1 genomic data that remained private

and unpublished during this work. We created a Pathway Genome Database (PGDB) using

the PathwayTools software (Krummenacker et al., 2005), which takes as input a diverse set of

specially-formatted gene structure and annotation files and outputs a fully integrated PGDB,

which is web-browsable and integrated into all of our tools and information systems. We

used the 12X assembly with the V1 gene structure predictions with the fine-tuned functional

annotation from Giorgio Valle’s laboratory in Padova, Italy plus publicly available annotation

of the Vitis vinifera chloroplast and mitochondrial genomes. The next few figures include

screenshot from a VitiCyc web browsing session displaying general statistics, a section of

chromosome 1, and an example pathway (Figures B.3, B.4, B.5).
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Figure B.1 A VitisMart use case.
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Figure B.2 VitisMart is integrated with our GBrowse server.
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Figure B.3 VitisCyc summary statistics.
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Figure B.4 Chromosome 1 in VitiCyc.
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Figure B.5 The glycolipid biosynthesis pathway in VitiCyc.
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APPENDIX C. LARGE TABLES AND FIGURES

Figure C.1 Enter your IDs in the box on the left to receive the correspond-

ing BioCyc IDs in the box on the right if they exist.
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Table C.1 Icons and buttons on the web tool.

Query List. This represents the Query List.

Response Groups. This represents the Response Groups.

Pathway Network. This represents the selected pathway network.

Query List → Response Groups. This represents flow from the Query List

to the Response Groups.

Query List ← Response Groups. This represents flow from the Response

Groups to the Query List.

Query List ←→ Response Groups. This represents the sum of flow between

the Query List and Response Groups.

Lookup IDs. This button takes you to the BioCyc IDs of your query list.

Results Files. This button takes you to a directory containing output files

from your analysis.

Hard Link. This button provides a hard link that can be bookmarked and

saved for loading the same analysis at a later time.

Quality Control. This button takes you to a directory containing Erlang

distribution assessments for a random sample of response groups.

Download PDF. This button downloads a PDF of the three plots along with

a Venn diagram of the significant response groups in each.

Response Groups IDs. This button downloads a list of the significant re-

sponse groups’ BioCyc IDs.
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Figure C.4 Distributions of correlations between cross-platform pairs of probes linked by com-

mon exons. We aim to remove Affymetrix probe-genome alignments associated

with poor correlation with exon-linked Nimblegen probes. Top-left shows the his-

togram of cross-platform probe pair correlations where the either the Affymetrix

(”Affy”) probe, Nimblegen (”MD”) probe, or both probes are perturbed in ex-

pression. This appears to be a mixture of two populations: probe pairs with

correlations normally distributed around zero and probe pairs with correlations

approaching one. Top-right shows a histogram of correlations where both probes

are perturbed. Requiring that both are perturbed greatly reduces the popula-

tion of zero-correlated pairs. Bottom-left shows a correlations of randomly se-

lected probe pairs and bottom-right shows a histogram of p-values for the pairs

in top-left, evaluated using the sampling distribution generated for bottom-right.
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Figure C.5 After pooling the two platforms, we fit a linear model which accounts for a ”chip

effect.” This chip effect measures the significance of the platform quantification

differences and is non-zero both for RMA and RMA plus probe length scaling (left

and center columns, respectively). However, the chip effect vanishes when we use

level-scaling, and the chip effects are tightly distributed around zero (top-right).

The bottom row shows p-values for each probeset when testing the null hypothesis

that the chip effect equals zero.
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Figure C.7 Histograms of year effects as calculated by Equation 5.9. The plausibility of two

different populations is most apparent in the bimodal distribution of year effect

under the short day treatment for Seyval (top left). While this strong bimodality

in the short day × Seyval treatment carries through to the totals in the bottom

row and right hand column of histograms, they other joint distributions (S-VR,

L-VR, L-SV) also show a slight skew which may be cause by two very convoluted

distributions.



www.manaraa.com

146

Figure C.8 Boxplots for expression in each hybridization for all control probesets. The 20

selected as positive controls are shown in red. These are the controls used as

expressed references for variability caused by noise.

Figure C.9 The Quantile-Quantile plot checking for multivariate normality in positive con-

trols shows good fit, except for outliers in the tails. Since the quantiles of controls

statistical distance from their centroid line up with the theoretical χ2 quantiles,

we can assume that the multivariate distribution of noise is multivariate Normal.
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Figure C.10 As we increase the control percentil cutoff (x-axis), the number of experimental

probesets with variance at least as large (y-axis) decreases. In order to mine only

the probesets perturbed by the treatments, we selected a variance cutoff equal to

the 75th percentile of the positive control variances, and selected experimental

probesets at least as variable as this, resulting in 1,304 perturbed probesets,

making up 7.9% of the entire set.
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