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ABSTRACT

The common goal for biological research is to develop models for the biological processes we
seek to understand. Such models, in the form of biochemical pathway networks which describe
the physical interactions between a living cell’s genes, transcripts, proteins, and metabolites
("Omics”), accumulate in different repositories for several model organisms as well as non-
model organisms. This thesis presents a set of integrated statistical bioinformatics tools that
address key problems in integrating large-scale Omics datasets with pathway network models.
A hardware accelerated non-parametric Omics mining method (Monte Carlo on the GPU)
allows faster screening of custom test statistics and functions. A software platform for mining
pathway databases (PathwayAccess) confers knowledge integration and comparison. Omics
and pathway mining are combined for a novel method for statistically discriminating func-
tionally meaningful subnetworks for their interaction with lists of entities mined from Omics
data, so that software can intelligently mine large and complex pathway databases to answer a
wide variety of questions and generate hypotheses (Discriminating Omics Response Groups in
Pathways). The method, called PathwayFlow, can discriminate pathways, reactions, metabo-
lite classes, or any other biological entity grouping (Response Groups), and automatically
accounts for connectivity-caused biases in the pathway network. It also differentiates between
regulators (or inputs) and regulatees (or outputs) for a given Query List of Omics entities.
It is applied to three real datasets: a simple E. coli gene expression dataset which validates
the method, a more complex Vitis gene expression dataset which complements functional
enrichment analysis (Grapevine’s Response to Short Days), and an ultra-high throughput re-
sequencing dataset for assessing genetic differences between two wine grape varieties (DNA

Sequencing Appendix).

www.manaraa.com



1. INTRODUCTION

Omics refers to the quantification of the entirety of something in a living cell. Whether it
is genomics, transcriptomics, proteomics, metabolomics, or other -omics, most studies involve

four general steps:

1. Design the experiment. This includes a careful consideration of the objectives of the

study and plans for sampling.

2. Generate the data. This is when the experiment is run; samples are generated/collected,

and biotechnologies such as sequencing or microarrays are used.

3. Mine the data. This is the first directly computational step (although design should
consider statistical requirements for sampling), where data points collected from the
biotechnologies are pre-processed and relavent entities (ie differentially expressed genes)

are mined from the full population.

4. Interpret the results. This is usually the most intellectually creative and challenging
step. Given lists mined from the data, scientists must reconcile them with existing
biological knowledge as well as hypothesize new models for the biological processes that

were activated or perturbed by the experimental treatments.

The purpose of this dissertation is to communicate my contribution to our ability to con-
duct the final two general steps: Data Mining and Results Interpretation, specifically in the
metabolic pathway context. These steps are closely linked, not only because they are computa-
tional, but because data mining results directly affect interpretation and hypothesis generation;
During the data mining step, the interpretation step must be considered so that the desired

behaviorssaresminedsand-during the interpretation step, one must understand how the omics
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lists were mined from the data. Figure 1.1 illustrates the relevant research processes and how

they relate to one another as well as their focus in the following chapters.

Lists mined for Pathway Knowledge

different questions Chapters 2 and 3
Chapters 1 and 3 Appendix B

Contextual

Interpretation
Chapters 3 and 4

Conclusions and

Hypotheses
Chapters 3 and 4

Figure 1.1 Research processes and the chapters which discuss them.

This document is organized into four chapters, each a manuscript that is either already
published in a peer reviewed journal or will be submitted to one. The first chapter, Monte
Carlo Randomization Tests for Large-scale Abundance Datasets on the GPU (Van Hemert
and Dickerson (2010a), Chapter 2 on page 5), was published in Computational Methods and
Programs in Biomedicine in June 2010 and discusses the challenge of mining lists of entities
from Omics data and presents a hardware-accelerated Monte Carlo based method for doing

so. It is an important component to the general work because mining lists from Omics data is
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directly related to interpretation and pertains to the data mining step.

The second chapter, PathwayAccess: CellDesigner Plugins for Pathway Databases (Van Hemert
and Dickerson (2010b), Chapter 3 on page 20) was published in Bioinformatics in July, 2010
and presented at the 2010 PathwayTools Workshop at the Stanford Research Institute and dis-
cusses the challenges of curating and integrating different pathway network model repositories
and presents a software for doing so. It is important because an understanding of the existing
pathway databases is necessary for processing such data and knowledge and pertains to the
interpretation step, specifically the pathway context.

The third chapter, Discriminating Omics Response Groups in Biochemical Pathway Net-
works (to be submitted, Chapter 4 on page 37), presents a novel method for statistically
modeling and discriminating subnetworks from a pathway network using sound hypothesis
tests. Inputs include a list of Omics entities (i.e. differentially expressed genes), a metabolic
pathway network on which to base interpretation, and a preset definition of response groups to
be discriminated; response groups can be any delineation of metabolic entities in the network
such as pathways, reactions, or chemical compound classes. Current implementations of the
tool only support pathway or reaction response groups. The output is a visualization of the hy-
pothesis tests used to discriminate significant response groups along with lists of said response
groups. The method is validated with a web tool use case for analyzing differentially expressed
E. coli genes in the EcoCyc pathway network and a novel model for FE. coli response to Lipid
A deprivation is posited. This chapter pertains to the interpretation step and is the main
computational contribution of this work by integrating concepts from the first two chapters.

The fourth chapter, Expression Platform Integration and Insights into the Grapevine’s Re-
sponse to Short Winter Days (to be submitted, Chapter 5 on page 63), focuses on grapevine
data and includes two parts: First, a technical gene expression integration study with a novel
method for exon-specific quantification and verified by a comparison to RNAseq data. This sec-
tion is a key component to the work because understanding the relationships between different
biotechnologies is necessary for processing Omics data. It also uses some of the same compu-

tational theory as the third chapter, but for modeling relationships between exons and the mi-
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croarray probes that measure them instead of pathway networks. Second, a novel multivariate
data mining effort to mine time-dependent activity from gene expression in the paradormant
buds of Vitis riparia along with a functional analysis using conventional category enrichment
tests and our novel pathway flow modelling method described in the third chapter. This section
is also important because it applies a novel mining method to real data and then complements
the flow analysis method in the third chapter with a traditional category enrichment analysis
for the resulting gene lists to generate new hypotheses for the grapevine’s response to shorter
photoperiods. This chapter discusses all four general Omics steps and uses novel methods for
the third and fourth steps.

Two appendices include content from other bioinformatic work conducted during this time.
Much of the work presented in the appendices was done at the University of Verona under the
supervision of Dr. Mario Pezzotti and funded by a student travel stipend awarded by the Grape
Research Collaboration Network. Appendix A on page 97 discusses challenges and solutions for
processing ultra-high throughput data from Next-Generation Sequencing projects. This section
is highly relevant to the main document because it shows exposure and understanding of new
biotechnologies and the computational methods that are being developed to process their data.
Appendix B on page 114 discusses solutions for curating the results and integrating them with
functional annotation, which is a non-trivial task when working with multiple collaborators at

different locations and different sets of functional annotation.
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2. MONTE CARLO RANDOMIZATION TESTS FOR LARGE-SCALE
ABUNDANCE DATASETS ON THE GPU

A paper published in Computational Methods and Programs in Biomedicine

John L. Van Hemert and Julie A. Dickerson

Abstract

Statistical tests are often performed to discover which experimental variables are react-
ing to specific treatments. Time-series statistical models usually require the researcher to
make assumptions with respect to the distribution of measured responses which may not
hold. Randomization tests can be applied to data in order to generate null distributions
non-parametrically. However, large numbers of randomizations are required for the precise
p-values needed to control false discovery rates. When testing tens of thousands of variables
(genes, chemical compounds, or otherwise), significant ¢g-value cutoffs can be extremely small
(on the order of 1075 to 1078). This requires high-precision p-values, which in turn require
large numbers of randomizations. The NVIDIA®) Compute Unified Device Architecture(®)
(CUDA®) ! platform for General Programming on the Graphics Processing Unit (GPGPU)
was used to implement an application which performs high-precision randomization tests via
Monte Carlo sampling for quickly screening custom test statistics for experiments with large
numbers of variables, such as microarrays, Next-Generation sequencing read counts, chromoto-
graphical signals, or other abundance measurements. The software has been shown to achieve

up to more than 12 fold speedup on a Graphics Processing Unit(GPU) when compared to a

INVIDIA
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powerful Central Processing Unit(CPU). The main limitation is concurrent random access of

shared memory on the GPU. The software is available from the authors.

Introduction

Statistical models provide a detailed analysis of the extremity of observed data and are
always based on some number of assumptions. These assumptions usually consider the rela-
tionships between the test subjects and treatments as well as the nature in which a subject
responds to a treatment. Randomization tests provide a non-parametric measure of the ex-
tremity of an observation which does not require these assumptions. While some methods
such as Knijnenburg et al. (2009) attempt to approximate sampling distribution behavior in
the tails by fitting curves to simple permutation sets, exact permutation is the only way to be
sure of tail behavior for complex statistics.

Time series experiments violate the usual assumption of independence in statistical testing
because samples from different time points are inherently related through time. One method
which does not require independence is the generation of a null distribution by reordering
data labels in all possible permutations and calculating the value of a test statistic for each
permutation. The test statistic calculated from the observed abundance profile can then be
tested under the null hypothesis, by comparing it to the generated null distribution. See
Figure 2.1 for an illustration of the general randomization test procedure. A test statistic
can be any meaningful function of the abundance profile of a variable. While a student’s T
statistic is an example of a simple parametric test statistic, other functions can be used with
this application, such as comparing different distance metrics between treatments through
time. When the number of samples over the time points is prohibitively large, a Monte Carlo
simulation simply samples randomly from the population of all possible permutations in order
to estimate the true null distribution. Gene expression datasets created using microarray
or Next-Generation technology are prime candidates for our method because these datasets
contain tens to hundreds of observation on thousands to tens of thousands of variables.

Generating very large numbers of permutations is essential for multiple testing correction.
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Consider an experiment with 20,000 abundance profiles. Sampling 100 random permutations
for each of the 20,000 variables may be computationally convenient. However, the significance
cutoff for rejecting the null hypothesis for a variable must be corrected for multiple tests (there
are actually 20,000 tests for this single experiment). Without such correction, a Type I Error
Rate of 0.05 would produce 20,000 % 0.05 = 1,000 false positives on average. The simplest
method, known as Bonferroni correction (Holm, 1979), divides the desired false discovery rate
by the number of tests. If the FDR is 0.05 (a common selection), then the significance cutoff
would be 0.05/20,000 = 0.0000025. Clearly, the precision of sampling only 100 permutations
for an abundance profile is inadequate. Sampling 100 random permutation statistics results
in p-values of 0.0, 0.01, 0.02, up to 1.0; the smallest non-zero p-value is 0.01, which is much
larger than the cutoff value. These examples show that there is a granularity associated with
permutation statistics which limits the sensitivity of the overall test. For our example with
20,000 abundance profiles permuted 100 times, there is a granularity of 1/100 = 0.01, so
profiles with true exact permutation p-values between 0.0000025 (the cutoff value) and 0.01
would not be considered interesting, because they would usually yield zero random statistics
more extreme than their corresponding observed statistics. On average, sampling just 100
permutations would yield p-values of 0.0 and declare them as interesting, resulting in false
positives. For this example, a granularity of 1/107 = 10~7 would be necessary to discriminate
between true random statistics of 0.0000025 and 0.0000026; false Discovery Rate would not
be correctly controlled with less than 107 permutations for each variable. Alarmingly, under
a null hypothesis with a uniform distribution of p-values, an experiment with 20,000 variables
would be expected to produce (0.01 —.0000025) 20,000 = 200 unintended significant p-values.

Permuting so many abundance profiles so many times each can be computationally pro-
hibitive. Fortunately, the process is parallelizable on a graphics processing unit (GPU). GPUs
are designed to quickly update information on pixel displays in parallel. GPUs are usually
able to carry out specific hardware-tuned calculations meant for graphics display. NVIDIA’s
CUDA platform provides a C-like programming language and compiler enabling general pro-

gramming of standard and user-defined functions on the GPU. The following sections describe
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the algorithm and speedup results for high-precision randomization tests on a GPU. NVIDIA’s
CUDA (Corporation, 2007) platform for GPGPU was used to implement an application which
performs high-precision randomization tests via Monte Carlo sampling for quickly screening
custom test statistics for abundance data. The software achieves up to more than 12 fold

speedup on a GPU when compared to a powerful CPU.

Strengths

Conducting large numbers of randomizations for each variable enhances multiple testing
correction and improves confidence in results. The massively parallel GPU can be a powerful
tool for randomization tests on abundance data when the experiment is complex, parametric

assumptions are unmet, and high p-value precision is necessary for correct FDR, control.

Weaknesses

Shared GPU memory creates a speedup bottleneck for data-dependent applications. On
a multi-cored computing architecture with shared memory, the processing speed of this type
of application depends on the architecture’s ability to allow multiple threads (cores) to access
memory simultaneously. The architecture used here is CUDA compute capability 1.0, which
limits the number of simultaneous coalesced memory accesses to 16 and does not offer large
enough on-chip cached memory for typical abundance datasets. Future plans include redesign
of the application using a more advanced architecture such as CUDA compute level 1.3 which
may provide more flexibility in coalescing memory accesses between threads. Goals of the
improved application would include all the those for the current one, plus providing a speedup

over the compared CPU architecture significantly greater than 12X.

Computational methods and theory

Data representation

Abundance experiment data are usually stored as text files in the form of delimited tables.

Rows are labeled by unique identification numbers or accessions representing different variables.
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Columns are labeled by different treatments, which may include time points at which each
variable’s abundance level is measured under different conditions and at different time points. A
cell value in the table is a real number representing abundance level for a specific variable under
a specific treatment. It is important to note that there are several methods for normalizing
raw abundance data, resulting in this tabular form. Such methods include MAS5.0, RMA, and

GCRMA (Irizarry et al., 2003b).

Data manipulation
Data preparation

The application reads a tabular abundance data file into host memory and then copies it to
device global memory, where it can be read by all threads after the randomization test kernel
launches. Before the test statistic calculation begins, another kernel transposes the input data.
The data must be transposed to allow for coalesced GPU global memory accesses (see Figure
2.2). See Corporation (2007) for details on memory access coalescence. The kernel used to

efficiently transpose the data is provided with the CUDA toolkit as an example project [7].

Permute column indices

Column index permutation is parallelized by thread block. Each data row (abundance
profile) is permuted according to permuted indices shared by each thread block. This way,
random permutation need only be conducted once for each permutation requested by the user
and not r times for each permutation requested where r is the number of data rows. This
also allows for coalesced memory accesses when permuted data rows. The kernel parallelizes
an algorithm for pseudo-random number generation similarly to the Mersenne Twister project
example included in the NVIDIA CUDA Software Development Kit (SDK) (Pdlozhnyuk, 2007).
The Mersenne Twister algorithm is a large-period bit vector-based method for pseudo-random
number generation and is ideal for implementation on the GPU. The pseudo-random numbers
generated are used to shuffle the data row indices (0 through the number of data columns

less 1) using the modern implementation of the Fisher-Yates Shuffle described in (Durstenfeld,
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1964).

Compare observed statistic with permutation-based statistic

With a shared index permutation now in hand, data row processing is parallelized by thread
within each block. Each thread in a thread block is assigned a different data row (abundance
profile). Each thread then stores its data row in permuted order according to the index
permutation. It then calculates the test statistic and compares it to the same test statistic
for the observed (un-permuted) data row (abundance profile), which has been calculated and
stored in global GPU memory previously by a different kernel. If the randomly permuted data
results in a more extreme test statistic, a count of permutations at least as extreme as the data
row is incremented. When finished, this count will be divided by the number of permutations,
resulting in a p-value which approaches an exact limit as the number of permutations grows.
Note that the meaning of "more extreme” depends on the meaning of the test statistic. For
example, some test statistics may require a comparison of the observation’s and permutation’s
distance from zero, rather than a simple comparison of the observation and permutation test

statistics. See the pseudocode for the thread kernel in Algorithm 1.

Output

When the permutations are complete for all variables, the count of randomizations at least
as extreme as each variable is divided by the number permutations executed for each variable
and written to a data file as p-values. These p-values can then be quickly plotted in a histogram
or other diagnostics in other software. If the p-values do not invalidate the test statistic, they
can then be converted to FDR~controlling statistics such as g-values (Storey, 2003; Storey and
Tibshirani, 2003; Storey et al., 2004), and used to create lists of interesting variables for further

biological analysis.
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input : input data matrix location in device memory

input : scratch work area location in device memory

input : result location in device memory

input : number of rows,columns,permutations

output: a count for each row in the data matrix. these represent the number of
randomly permuted test statistics that were more extreme than the test
statistic observed for each respective row

forall permutations do in parallel by thread block

initialize ordered column indices in shared block memory, S;

initialize random column indices in shared block memory, R;

forall columns do in parallel by thread within each block

store random column index in R;

end

one thread in each block shuffle .S according to R;

foreach row i do in parallel by thread within each block

© 00 N O ok W N -

permute row i according to S;
calculate test statistic for permuted row ;

[Er——
- o

if random permuted test statistic more extreme than observed then

=
N

increment count for ;
end

[
w

end

[y
S

end

=
(S}

Algorithm 1: Randomization test CUDA kernel
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Test statistic functions

Any function of a data row can be used as a test statistic. Typical functions are usually
measures of distance or similarity between treatment groups. These measures are then com-
pared similarly to the more restricted contrasts approach in Analysis of Variance. A set of
pre-coded test statistics for analyzing two- or three-factor experiments is provided in source
code for custom applications, including comparisons of distance metrics such as Canberra dis-
tance and Euclidean distance as well as comparisons of similarity measures such as Pearson,
Spearman, or Kendall correlation. Equation 2.1 illustrates the use of Euclidean distance for
a complex three-factor experiment. x;;; is the abundance measured under the ith treatment
for the first factor, the j** treatment for the second factor, and the k* treatment for the
third factor. Here, the statistic T is essentially a measurement of the interaction between the
first and second factors, in the Euclidean space of the third factor. More complex functions
can be written into the source code in the well-labeled statistic function section for custom

applications, providing test flexibility and complexity scalability.

TEucDist = \/Z(fUllk — T12k)% — \/Z($21k — T99k)? (2.1)
P !

Samples of typical program runs

Testing for speedup and correctness was conducted using simulated data as input. An
R script (R Development Core Team, 2010) was written to simulate preprocessed abundance
datasets of comparable size to 3-factor experiments found on PlexDB.org (Shen et al., 2005).
To test for correctness, a linear model was used to simulate variable behavior through time in
two factors. Equation 2.2 describes the linear model. One variable out of the 100 simulated

was randomly selected to exhibit an interaction effect.

Yigk = ko + B+ (i) + vk + € (2.2)

where
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W = The mean abundance for all measurements

o = the effect of the first factor’s it" level

Bj = the effect of the second factor’s j* level

v =  the effect of the third factor’s k™" level (the k" time point)
(i) = the effect of the interaction between o; and 3;

€ijr. -~  N(0,1)(Normally distributed random noise)

The model in Equation 2.2 was used to simulate 100 variables. These 100 variables were
then analyzed using the GPU application with the statistic generated by Equation 2.1 permuted
1000 times for each variable. The same was done using an R script and the resulting p-values
compared. The results were nearly identical, showing correct results from the GPU application.
See Figure 2.3.

For speedup profiling, datasets were generated containing different population sizes (data
matrix rows) and treatment population sizes (data matrix columns). The number of permuta-
tions was also adjusted for testing. A much simpler model for simulation was used for these test
to provide easy flexibility in the changing parameters (numbers of data matrix rows, columns,
and permutations). Each measurement in the data matrix is simply a pseudo-random number
sampled from a Uniform distribution between 0 and 1. Though this model is not realistic, it
quickly generates a data matrix of any size for speedup profiling.

Compute time and memory usage for this application are affected by data size and the
number of permutations requested. Speedup and GPU memory usage were profiled when
increasing each of three values: The number of input data columns (treatments), the number
of input data rows (variables), and the number of permutations generated.

Figure 2.4 shows the profiling results when increasing only the number of data columns
in input data. Speedup of over 10 is achieved except for two cases. It is unclear why 800
and 1,000 data columns consistently produced small speedup. These slow-downs occurred for
many different randomly simulated datasets of different sizes. CUDA runtime register and

memory usage details may hide the cause for this (see Corporation (2007)). Figures 2.5 and
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2.6 show profiling results when increasing the number of data rows and the number of requested

permutations, respectively.

Specifications

This application uses both shared and global GPU memory such that usage is well within
the bounds of most NVIDIA CUDA-supporting hardware. Concurrent memory accesses are
coalesced to maximize random access bandwidth. Testing and speedup calculation was con-
ducted using an Intel(R) Core(TM)2 CPU X6800 at 2.93GHz with 4096 KB cache and an
NVIDIA GeForce 8800 Ultra GPU with 16 multiprocessors at 1.51 GHz with 768 MB global

memory (804,585,472 bytes) and 16 KB shared memory per thread block (16,384 bytes).

Hardware requirements

1. NVIDIA CUDA graphics card with Compute Capability 1.0 or higher.

Software requirements

1. NVIDIA CUDA driver for the selected

graphics card (available from NVIDIA.com).

2. NVIDIA SDK (available from NVIDIA.com).

Availability: This software source is available for on a Subversion (SVN) server at
https://subversion.vrac.iastate.edu/Subversion/RandTest GPU /svn/RandTest GPU/.

Note that it requires the NVIDIA SDK mentioned above. Support is available upon request.

Funding: This project is funded by the National Science Foundation Plant Genome Re-

search, DBI 0604755.
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Figure 2.1 Each abundance profile is reordered (permuted) a large num-
ber of times and then each permutation is used to calculate a
random statistic which is then compared to the observed statis-
tic. The right-hand block represents the set of permutations
generated and processed for the first data row in the left-hand

block.
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Data rows
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(a) Tabular structure commonly representing preprocessed (b) The same 3x10
abundance data stored in a typical two-dimensional matrix. data table after
This is the un-transposed input data. transposition.

Figure 2.2 Transposing abundance data for column-major coalesced mem-
ory accesses. Note that as the threads walk along their respec-
tive variables, they are accessing contiguous cells in memory in
(b) and not in (a). Coalesced accesses require that the threads

access contiguous cells in memory simultaneously.(Corporation,
2007)
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Simulated data for 28 observations on 100 units
using 1000 permutations:
Correlation= 0.997091157138198
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Figure 2.3 Negligible differences in p-values were observed due to word
size and randomization differences between the GPU and R

approaches.
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Figure 2.4 Wall clock time and speedup (top), shared memory usage (bot-
tom left), and global device memory usage (bottom right)
when increasing the number of input data columns (treatments
and/or replications). Speedup of 6-10X is achieved while oper-
ating well within memory limitations.
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Figure 2.5 Wall clock time and speedup (left), and global device memory
usage (right) when increasing the number of input data rows
(variables). Speedup of 10-12X is achieved while operating well

within memory limitations.

Shared memory usage does not

change when changing only the number of input data rows.
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Figure 2.6 Wall clock time and speedup when increasing only the number
of permutations requested. Speedup of 12 is achieved. Memory
usage does not change when changing only the number permu-

tations.
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3. PATHWAYACCESS: CELLDESIGNER PLUGINS FOR PATHWAY
DATABASES

A paper published in Bioinformatics

John L. Van Hemert and Julie A. Dickerson

Abstract

Summary:

CellDesigner provides a user-friendly interface for graphical biochemical pathway descrip-
tion. Many pathway databases are not directly exportable to CellDesigner models. Path-
wayAccess is an extensible suite of CellDesigner plugins which connect CellDesigner directly
to pathway databases using respective Java application programming interfaces (API’s). The
process is streamlined for creating new PathwayAccess plugins for specific pathway databases.
Three PathwayAccess plugins, MetNetAccess, BioCycAccess, and ReactomeAccess, directly
connect CellDesigner to the pathway databases MetNetDB, BioCyc, and Reactome. Pathway-
Access plugins enable CellDesigner users to expose pathway data to analytical CellDesigner
functions, curate their pathway databases, and visually integrate pathway data from different
databases using standard Systems Biology Markup Language (SBML) and Systems Biology

Graphical Notation (SBGN).

Availability:

Implemented in Java, PathwayAccess plugins run with CellDesigner version 4.0.1 and were

tested on Ubuntu Linux, Windows XP and 7, and MacOSX. Source code, binaries, documen-
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tation, and video walkthroughs are freely available at

http://vrac.iastate.edu/~jlv.

Introduction

CellDesigner (Funahashi et al., 2008) is a tool for graphically building biochemical pathway
models which integrate model representation by Systems Biology Markup Language (SBML)
(Hucka et al., 2003) with graphical representation by Systems Biology Graphical Notation
(SBGN) (Le Novere et al., 2009). There exist many databases providing Application Program-
ming Interface (API) libraries enabling programmatic queries. These API libraries include
many biologically meaningful objects which carry out intuitive functions. For example, a
Pathway object can report the set of Reaction objects it contains, a Protein Complex object
can report the Monomer objects which contsruct it, and a Metabolite object might report its
SMILES and InChi codes. The problem is that a Pathway object in one API is not the same as
a Pathway object in the API of a different database; The same biological concept is represented
using independently developed in-silico representations, preventing any single application from

communicating and integrating across databases.

Functionality

PathwayAccess plugins directly interact with pathway databases so that the user can down-
load one or more pathways to a CellDesigner model and upload (or commit) a CellDesigner
model to a database. Figure 3.1 shows a dataflow diagram for typical use of the PathwayAccess
plugins.

The PathwayAccess plugin framework confers three major benefits, depending on whether
individual database API’s support data retrieval and modification. Firstly, the plugins make
pathways stored in remote databases available to the powerful modeling and simulation func-
tionality already provided by CellDesigner. Secondly, SBGN implemented by CellDesigner
provides a standard representation for biologists to curate pathway databases; the user can

create a pathway model and commit it to the database of his choice. A user can also download
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Figure 3.1 Dataflow for PathwayAccess plugins. PathwayAccess plugins
use respective APIs to communicate with different pathway
databases and integrate data in CellDesigner. As indicated
by arrows, depending on functionality supported by the data-
source, dataflow is uni- or bi-directional.

a pathway model from a database, edit it, and commit it back to the database, either replac-
ing the original pathway or creating a different version. Thirdly, CellDesigner can be effective
in visually comparing and integrating pathway data from one or many different databases;
metabolic networks can be downloaded directly into CellDesigner and integrated into custom
super-pathways. CellDesigner can export pathways into files for loading into other software
such as Cytoscape (Shannon et al., 2003), where SBGN is an ancilliary feature to network
analysis functions.

Since CellDesigner and most datasources’ user interfaces provide good automatic layouts,

layouts are left to the datasources and CellDesigner independently.

Pathway Integration Across Databases

When PathwayAccess plugins download pathways, they are integrated with the growing
model in memory. CellDesigner is suited to support integration because it uses the XML-based
SBML data model not only for file storage, but also for objects in memory— ideal for represent-
ing annotations integrated from different sources. Among other annotations, PathwayAccess
stores synonyms this way, enabling it to match integrated objects in the same subcellular
compartment that may be named differently across databases. To prevent duplicate reactions
in integrated pathways, a reaction hashing algorithm calculates a unique integer for every

combination of reaction substrates, products, and catalysts (see Additional Material). Each
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PathwayAccess plugin has a unique, but editable highlight color, which can be used to color
the model objects downloaded using that plugin. Objects from multiple databases are colored

by mixing the colors of the plugins that downloaded them.

Creating New PathwayAccess Plugins

The PathwayAccess framework includes a core library plus one or more independent plug-
ins. A plugin developer can easily create a new CellDesigner plugin which communicates with
any pathway database providing a Java API. Simply create a new CellDesigner plugin object
using the PathwayAccess library and define a set of simple database query operations, depend-
ing on whether the plugin will support download and/or saving a model to the database. To
create a PathwayAccess plugin which downloads a pathway, define 18 simple functions such
as get the synonyms of an object (pathway, metabolite, gene, etc). To design a commit fea-
ture, define nine simple functions such as add substrates to a reaction in the database. With
these simple operations defined for communicating with a database, PathwayAccess handles all
interaction both with CellDesigner and the database, similarly to Cytoscape’s Data Integra-
tion Request For Comments (Killcoyne and Pico, 2009), and provides a way to enrich objects

beyond the annotation used for integration.

Examples

Three PathwayAccess plugins, MetNetAccess, BioCycAccess, and ReactomeAccess were
created. In addition to representing biological objects differently, each uses a different com-

munication protocol: SQL, Sockets, and Web Services, respectively.

BioCycAccess: Download and Commit to a PGDB. BioCyc databases are in-
dividually deployed for specific organisms and purposes (Karp (2005); Karp et al. (2005),
http://www.biocyc.org). BioCycAccess uses JavaCycO, our new library wrapped around
the JavaCyc API (Mueller et al., 2005; Krummenacker et al., 2005), running in client mode to
connect to a BioCyc Pathway Genome Database (PGDB) that is running JavaCycO in server

mode. It supports both downloading and committing pathways.
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ReactomeAccess: Download from Reactome. Reactome is a large repository for
pathways (Vastrik et al., 2009). ReactomeAccess supports downloading pathways from Reac-

tome directly into CellDesigner models via an API wrapped around Reactome’s Web Services.

MetNetAccess: Download and Commit to MetNet. MetNetAccess provides CellDe-
signer access to the pathway database MetNetDB using MetNetAPI (Sucaet and Wurtele,
2010), which is wrapped around SQL queries. It supports both downloading and committing
pathways. MetNetDB is an integrated pathway database that currently includes Arabidopsis
thaliana, yeast, soybean, and the grapevine. MetNetAccess has been used to curate many
pathways for different organisms in MetNetDB (Wurtele et al., 2007). MetNet allows public

downloading of data, but only registered curators may modify data in MetNetDB.

Impact

The PathwayAccess suite of CellDesigner plugins is a powerful tool for researchers who
work with metabolic pathway data and wish to take advantage of graphical and computational
CellDesigner features. By directly accessing and publishing to pathway databases, decentral-
ized pathway integration and comparison is made possible over simply saving and loading
SBML files. While three PathwayAccess plugins have been released, the practical scope of the
PathwayAccess library is as wide as the number of databases to which CellDesigner can connect
because communication requires a Java API. MetNetAccess, BioCycAccess, ReactomeAccess
and future PathwayAccess plugins enable CellDesigner users to expose pathway data to analyt-
ical CellDesigner functions as well as visually integrate and curate pathway data from different
databases using standard SBGN- something which has been previously prevented by disparate

in-silico representations of biological objects.

Discussion of Technical Solutions

The following sections were included as as supplementary technical description of this work.
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Importing and integrating pathways

PathwayAccess effectively communicates with pathway databases to integrate pathway
models in CellDesigner. The main challenge of integration is preventing redundant objects—

both species and reactions.

Preventing duplicate species

During an import, there are two sides to our solution: On the database side, a plugin must
be able to retrieve all synonyms of a generic pathway object that is to become a CellDesigner
species. The PathwayAccessPlugin abstract class requires all extending subclasses (which are
the specific plugins, such as BioCycAccess) implement a function that retrieves all synonyms
from its database for a given generic pathway object. If the database does not support syn-
onyms, the plugin should at least return a list where the single member is the name of the
generic object.

On the CellDesginer side, imported species must maintain a list of synonyms that is per-
sistent through file saves. For this we designed a simple XML schema that is inserted into
the CellDesigner Species Notes, which are seen on the botton right corner of the CellDesigner
screen when a species is selected (see procedure AddAnnotation in Section 3 of this document).
Using XML this way confers several benefits: 1) PathwayAccess annotations are easily parsed
using the libSBML library, which is the core of CellDesigner, 2) CellDesigner models are saved
in XML format by default, so the XML annotations fit nicely within these saved files and
are persistent, and 3) our schema is simple enough that the PathwayAccess annotations are
human-readable 4) PathwayAccess annotation remains attached to species object in CellDe-
signer and SBML. There are two issues, however: 1) The SBML specification does not allow
custom XML be added to the Notes field of objects, and 2) if a user adds other text to the
Notes field of an object, PathwayAccess is unable to parse the XML. Despite these, issues,
PathwayAccess plugins do perform their goals in CellDesigner as along as the user does not
add text to the Notes fields of objects or mind seeing SBML warnings during model saves and

loads. Also note that PathwayAccess considers object IDs and names specific to databases to
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be synonyms as well, and IDs are always first searched in the existing model to find the same
ID from the same database without searching synonyms.

Before a pathway is imported to a CellDesigner model, a dictionary of synoyms mapped to
species objects is built from all existing species in the model, and used to look up speces by

synonym (see procedure ImportPathway in Section 3 of this document).

Preventing duplicate reactions

Even if duplicate species are created, duplicate reactions can easily appear when integrating
overlapping pathways. Our solution represents the parts of a reaction (inputs and outputs)
as a string and converts that string to a unique integer using Java’s hash code function for
strings (see procedure ReactionHash in Section 3 of this document). The key is that we
can build complete CellDesigner reactions in memory before adding them to the model on
the screen. This way, we can build each imported reaction in memory, where its inputs and
outputs (reactants, modifiers, and products) are species that have been either newly created
or looked up using IDs and synonyms (if the reaction is indeed a duplicate, all inputs and
outputs will have been found in the model and not created). CellDesigner assigns model-
specific IDs to objects (species and reactions) per SBML standards, so we build the reaction
parts-representing string using these SBML IDs. The type of the reaction is also added to
the string. Currently, the location of the reaction is ignored because of the volatility of this
annotation in different databases for reactions. The ID members of a reaction-representing
string are always sorted before creating the hash value of their concatenation. This way, if
a two reactions have exactly the same inputs and outputs and they are of the same reaction
type, they have the same reaction hash value. See procedure ImportReaction in Section 3 of
this document.

Before a pathway is imported to a CellDesigner model, a dictionary of reaction hash values
mapped to reaction objects is built from all existing reactions in the model, and used to look

up reactions by hash value (see procedure ImportPathway in Section 3 of this document).
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Caching database queries

Database query performance is dependent on the individual plugins that use the Path-
wayAccess library. As stated in the manuscript, our three PathwayAccess plugins use three

different communication protocols, each with their own performance strengths and weaknesses.

BioCycAccess

BioCycAccess uses our software, JavaCycO (http://vrac.iastate.edu/~jlv/javacyc), to con-
nect to a local or remote BioCyc database. Communication uses a socket protocol that issues
Lisp code to and from the server, plus some special commands we developed for searching.
JavaCycO operates in two modes: 1) client mode, and 2) server mode. Within the BioCycAc-
cess plugin, JavaCycO operates in client mode. In client mode, JavaCycO maintains a cache of
objects in local memory in the database so that their information need not be repeated loaded.

To connect to a remote BioCyc database, BioCycAccess must communicate with a server
running JavaCycO in server mode along with the PathwayTools software. In both modes,
JavaCycO maintains a search cache mapping IDs, names, and synonyms to lists of objects
in the database, which is used to lookup existing objects during a pathway commit to the
database. If the client instance does not have a synonym in its cache, it asks the server
instance to search for it. Since the server mode instance of JavaCycO is persistent across
many clients, most clients will build their own cache by issuing search queries to the server;
if a server mode instance of JavaCycO runs long enough and is used by enough clients, it
will build a cache close to the complete database and become very fast when searching for

synonyms.

ReactomeAccess

ReactomeAccess uses an API we designed that wraps around the webservice provided by
Reactome.org to query its database. ReactomeAccess includes a custom connection object we

designed to maintain a cache of Reactome objects as they are loaded via the webservice.
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MetNetAccess

MetNetAccess communicates with MetNetDB using
MetNetAPI (http://metnet3.vrac.iastate.edu/api/), which is a collection of objects wrapped
around SQL queries to the MetNetDB MySQL database. MetNetAccess leaves caching to

MetNetDB, as MySQL databases do maintain query caches.

Committing a model to a database

Only PathwayAccess plugins that connect to databases supporting data modification can
commit a CellDesigner model to the database. JavaCycO supports free data modification
(only expose your development PGDBs to JavaCycO for now), so BioCycAccess can commit
a model to a PGDB. MetNetAPI supporst data modification with user authentication, so
MetNetAccess can only commit a model to MetNet if the user has logged into MetNetDB with
a privileged user account. Reactome does not support data modification, so it is not an option
for ReactomeAccess.

All PathwayAccess plugins must implement three object initialization functions: initialize
a pathway, initialize a reaction, and initialize a species (aka ’entity’). Each of these functions
take as input the analogous object from CellDesigner (CellDesigner model is to generic pathway
object as CellDesigner reaction is to generic reaction object as CellDesigner species is to generic
entity object) and first must search the database for the species in the database. Recall that
all PathwayAccess annotation is available withing the CellDesigner species object because it
is contained in the Notes field as XML; If the species came from the database, it’s database-
specific ID is stored there, along with all names and synonyms from all databases it came
from. Other database-specific annotations are stored there as well. For example, MetNetDB
uses a confidence annotation, BioCyc databases provide a comment field, and both MetNetDB
and BioCyc share an EC field for zero or more EC numbers. If a match is found, plugins
must clear the object so that all information for it in the CellDesigner model can overwrite
existing information about it in the database. Else, the plugin must create the object in the

database and return it in an ’empty’ state, whatever that may mean for the particular database
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and API. It is left to the plugin to handle multiple hits in the database. MetNetAccess and
BioCycAccess both use special convenience functions of the PathwayAccess library to prompt
the user to select one out of the multiple hits from the database when such a search result
occurs, and they remember the selection for subsequent attempts to initialize the object during
the same commit operation.

PathwayAccess plugins must also implement functions to add inputs (reactants and modi-
fiers) and outputs (products) to reaction objects in the database.

Database API’s manipulate biological object locally in memory and if they support modi-
fiying the database, they provide some sort of object commit function that actually writes the
object to the database. All PathwayAccess plugins must implement a commit object method
that takes as input one of its generic pathway database objects and writes it to the database.

See procedure CommitModel in Section 3 of this document.

Pseudocode

The following procedures are the important operations in PathwayAccess that allow for
integration from different databases as well as curation. See
http://vrac.iastate.edu/~jlv/pathwayaccess/ for documentation, binaries, and source code.

This pseudocode is somewhat detailed to communicate exactly how and when the proce-
dures interact. Note that all of these procedures are implemented in the PathwayAccess library
and not in the plugins; new plugin developers never need to implement these procedures be-
cause we have already done so and provided the PathwayAccess library for it. They only need
to implement simpler database communication functions. In pseudocode below, these required
functions are used when the procedures ”ask plugin to...” These statements are first listed to
communicate the requirements for creating a new PathwayAccess plugin. See them in more de-

tail by clicking the API Documentation link at http://vrac.iastate.edu/~jlv/pathwayaccess/.

Acknowledgement Thank you to Yves Sucaet and Eve Wurtele for developing MetNe-
tAPI and to Jesse Walsh for testing JavaCycO. This work is funded by the National Science

Foundation Plant Genome Research Program, DBI 0604755, and EEC 0813570.
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Procedure Calls to plugin that developer must implement

// This is not a procedure, but the set of lines in the following procedures
which ask the plugin for something.

GenericObjectsList < ask plugin for all of genericPathwayObject’s reactions;

id < ask plugin for ID of genericReactionObject;

GenericObjectsList < ask plugin for all of genericReactionObject’s reactants;

GenericObjectsList <+ ask plugin for all of genericReactionObject’s modifiers;

GenericObjectsList < ask plugin for all of genericReactionObject’s products;

id < ask plugin to retrieve its database’s unique ID of object;

name < ask plugin to retrieve the name of object;

type < ask plugin to retrieve the CellDesigner type of object ; // CellDesigner constants

like SIMPLE_COMPOUND or GENE

location < ask plugin to retrieve the subcellular location of object;

Synonyms < ask plugin to retrieve any synonyms of object;

genericPathwayObject = ask plugin to intialize and commit the current CellDesigner model as

a pathway;

genericReactionObject < ask plugin to initialize Reaction;

object < ask plugin to initialize and commit species;

ask plugin to add object to genericReactionObject as a reactant;

object < ask plugin to initialize and commit species;

ask plugin to add object to genericReactionObject as a modifier;

object < ask plugin to initialize and commit species;

ask plugin to add object to genericReactionObject as a product;

ask plugin to commit genericReactionObject;

ask plugin to add genericReactionObject to genericPathwayObject;

www.manaraa.com



[= I B N I VI

31

Procedure ImportPathway (plugin,genericPathwayObject,model)

input : a PathwayAccess plugin, plugin
input : a generic pathway object defined by the plugin’s database API, genericPathwayObject

// First, build a mapping from reaction hashes to reactions already in the

model
initialize ReactionHashes;
ReactionsList < ask current CellDesigner model for all existing reactions;
foreach Reaction in ReactionsList do
hash < ReactionHash(Reaction);
add (hash =Reaction) to ReactionHashes;
end

// Next, build a mapping from species names and synonyms to species already
in the model

7 initialize SpeciesDictionary;

8 SpeciesList < ask current CellDesigner model for all existing species;

10
11
12
13

14
15
16
17
18
19

foreach species in SpeciesList do
foreach name in all NAME annotations for species do
‘ add (name =-species) to SpeciesDictionary;
end

end

// Next, begin importing generic reactions
GenericObjectsList < ask plugin for all of genericPathwayObject’s reactions;
foreach genericReactionObject in GenericObjectsList do
Reaction < ImportReaction(plugin,genericReactionObject);
id < ask plugin for ID of genericReactionObject;
AddAnnotation(Reaction, ”plugin.ID”, id);
end
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Procedure ImportReaction(plugin,genericReactionObject, ReactionHashes)

input : a PathwayAccess plugin, plugin

input : a generic reaction object defined by the plugin’s database API, genericReactionObject

input : a dictionary of reaction hash values mapped as keys to reactions in the model,

ReactionHashes. This is populated before every new download operation by reading
the XML node HASH stored in all reactions’ Notes attributes. See procedure

ReactionHash.

output: result, either a newly created CellDesigner reaction object, or the matching reaction

that already exists in the model
result <— create new, empty CellDesigner reaction;
GenericObjectsList < ask plugin for all of genericReactionObject’s reactants;
foreach object in GenericObjectsList do
species < ImportSpecies (plugin,object);
add species to result as a reactant;

end

GenericObjectsList < ask plugin for all of genericReactionObject’s modifiers;
foreach object in GenericObjectsList do

species < ImportSpecies (plugin,object);

add species to result as a modifier;

end

GenericObjectsList < ask plugin for all of genericReactionObject’s products;
foreach object in GenericObjectsList do

species < ImportSpecies (plugin,object);

add species to result as a product;

end
hash < ReactionHash (result);

if ReactionHashes not contains key hash then // it is a new reaction

add result to current CellDesigner model;
add (hash =result) to ReactionHashes;
return result;

destroy result;
return ReactionHashes lookup hash;

end

else // it is a redundant reaction
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Procedure ReactionHash (reaction)

input : a CellDesigner reaction, Reaction
output: hash, a unique integer for the type, reactants, modifiers, and products of Reaction
initialize PartsList ; // a list of strings representing the parts of Reaction
add Reaction’s type to PartsList;
foreach species in all Reaction’s reactants, modifiers, and products do
add species ID to PartsList;
end
sort PartsList;
PartsString < convert PartsList to a single concatenated string;
hash < JavaStringHashCode (PartsString); // Java’s hashing algorithm
return hash;

© 000 N O ok W N =
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Procedure ImportSpecies (plugin,object)

input : a PathwayAccess plugin, plugin

input : a generic biological object defined by the plugin’s database API, object
input : a dictionary of names, synonyms, and database IDs, SpeciesDictionary.
output: result, either a new Species, or existing match.

1 id < ask plugin to retrieve its database’s unique ID of object;
2 name < ask plugin to retrieve the name of object;
3 type < ask plugin to retrieve the CellDesigner type of object ; // CellDesigner constant
4 location < ask plugin to retrieve the subcellular location of object;
5 if location is unknown then
6 location < cytosol;
7 end
8 Synonyms < ask plugin to retrieve any synonyms of object;
9 key < ’plugin id’; // search for ID from same database
10 if SpeciesDictionary contains key then
11 ‘ result <— SpeciesDictionary lookup key;
12 else
13 key < ’location type name’; // search for name
14 if SpeciesDictionary contains key key then
15 ‘ result < SpeciesDictionary lookup key;
16 else
17 foreach synonym in Synonyms do
18 key < ’location type synonym’; // search for a synonym
19 if SpeciesDictionary contains key key then
20 result < SpeciesDictionary lookup key;
21 break; // be greedy
22
23 end
24 end
25 if result null then // No match found. Create a new species.
26 result < create new species of type type in location named name;
27 end
28 AddAnnotation(result, ”plugin.ID”, id));
29 AddAnnotation(result, “plugin. NAMES”, name U Synonyms);
30 add to SpeciesDictionary mapping ’plugin id’=result;
31 add to SpeciesDictionary mapping ’location type name’=-result;
32 foreach synonym in Synonyms do
33 key < ’location type synonym’;
34 add (key =result) to SpeciesDictionary;
35 end
36 end

37 return result;

www.manaraa.com



35

Procedure AddAnnotation(sbase,label, Values)

input : a CellDesigner SBML object, sbase

input : an annotation label, label

input : a set of values to add under label, Values

// PathwayAccess annotations are stored by building a simple XML tree in the
Notes attribute of a CellDesigner species or reaction:

// <List name="label part 1">

//  <List name="label part 2">

// <Item value="Values item 1">

//  <Item value="Values item 2">

// <Item value="Values item 3">

// label can be a hierarchy path such as "MyPlugin.NAMES"
LabelParts < split label on delimiter (.");
notesXML < get Notes attribute for sbase;
XMLtarget < find XML List node in notesXML referred to by LabelParts;
if XMLtarget null then
XMLtarget < build XML List node in notesXML referred to by LabelParts;
end
add Values as XML Items under XMLtarget;

b =TS B NV R
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Procedure CommitModel (plugin)

input : a PathwayAccess plugin, plugin
organism < ask user to select organism from those in plugin’s database;
ask the plugin to validate the model for commit; // this is where MetNetAccess checks
for privileged user authentication
if invalid then
show error message;
return;
end
genericPathwayObject = ask plugin to intialize and commit the current CellDesigner model as
a pathway;
ReactionsList < ask current CellDesigner model for all existing reactions;

9 foreach Reaction in ReactionsList do

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

genericReactionObject + ask plugin to initialize Reaction;

foreach species in Reaction reactants do

object < ask plugin to initialize and commit species;

ask plugin to add object to genericReactionObject as a reactant;
end

foreach species in Reaction modifiers do

object < ask plugin to initialize and commit species;

ask plugin to add object to genericReactionObject as a modifier;

end
foreach species in Reaction products do
object < ask plugin to initialize and commit species;
ask plugin to add object to genericReactionObject as a product;
end
ask plugin to commit genericReactionObject;

ask plugin to add genericReactionObject to genericPathwayObject;
end
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4. DISCRIMINATING OMICS RESPONSE GROUPS IN
BIOCHEMICAL PATHWAY NETWORKS

A paper to be submitted to Nucleic Acids Research

John L. Van Hemert 1:2:3 and Julie A. Dickerson?3:4

Abstract

Analysis of Omics experiments generates lists of entities (genes, metabolites, etc) selected
based on specific behavior. Functional interpretation of these lists usually entails some sort of
catorgy enrichment tests using functional annotations like Gene Ontology terms. We present
a method for interpreting Omics lists in the context of metabolic pathway and regulatory
networks using directed stochastic modeling of the networks themselves. We also present web
tool for using our method and a proof of concept application to an E. coli transcriptomics data
set where we used the web tool to confirm common knowledge of the importance of Lipid A
and posit a model for E. coli response to Lipid A deprivation. Intuitively, the main theme is
response to osmotic stress, but we also were able to detect other responses that are supported

by the literature.

Introduction

Analysis of Omics experiments generates lists of entities (genes, metabolites, etc) selected

based on specific behavior. Common practice is to leverage existing functional knowledge of

!Electrical and Computer Engineering
2Bioinformatics and Computational Biology
3Jowa State University, Ames, Iowa

4 Author for.correspondence
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the entities in a list by further listing the functional annotations assigned to the members of
the list. Category enrichment analysis generally refers to testing the null hypothesis that the
distribution of functional annotation in the entity list is similar to the distribution of functional
annotation for all entities (Nettleton et al., 2008; Barry et al., 2005; Subramanian et al., 2005;
Maere et al., 2005). If that hypothesis is rejected, one or more of the functional annotations
in the entity list is either over- or under-represented, and a general functional response or
perturbation is inferred for the experimental treatment and specific test used to generate the
entity list. For example, most plant biologists mine a number of sets of genes from results that
exhibit an expected behavior of biological interest and then map the selected genes to static
functional annotation and then manually or computationally determine which functions are
associated with the behavior in the experiment (Nettleton et al., 2008), (Maere et al., 2005).
Knowledge is often digitally stored as networks, whether it is ontological (Ashburner et al.,
2000; Cordero et al., 2009; Avraham et al., 2008) or biochemical (e.g., Reactome (Vastrik et al.,
2009), KEGG (Okuda et al., 2008), PathwayTools/BioCyc (Krummenacker et al., 2005), and
MetNetDB (Wurtele et al., 2007)). This makes functional analysis much more complex than
simple set comparisons, requiring more complex tools like MapMan (Thimm et al., 2004; Rotter
et al., 2009; Usadel et al., 2009), Array2KEGG (Kim et al., 2010), or KEGG Spider (Antonov
et al., 2008) to name a few. Most plant pathways are stored in AraCyc, PlantCyc (both BioCyc
Pathway Genome Databases (PGDBs)), and MetNetDB. These resources provide web-based
access to simple pathway visualizations, searching, links to other databases, as well as some
basic analysis tools.

Category enrichment is unable to directly infer causality; if a functional annotation term
is enriched in an entity list, we cannot determine whether the function is somehow causing the
perturbation of the members of the entity list, or members of the entity list are themselves a
response to some other signal and the enriched function is a response to the entities.

At the same time, biochemical pathway models are accumulating in central repositories
such as BioCyc, MetNetDB, Reactome, and KEGG databases. These pathway models use

and assign functions to entities by placing them in networks of chemical reactions. Pathway

www.manaraa.com



39

annotation has also been used in category enrichment where entities are annotated with the
names of the pathways in which they participate. Unfortunately, pathway annotation enrich-
ment suffers from the same general problems as category enrichment plus it fails to consider
the inter-connectivity and reactive relationships between different entities, reactions, and path-
ways; it is no different from common functional annotation enrichment analysis.

Our purpose in this work is to provide a methodology and tool for discriminating groups of
entities (Response Groups) in a pathway network which are highly connected to a Query List
of entities which results from a previous selection from Omics data. Such a tool has several

requirements:
1. Receive as input a biochemical pathway network structure

2. Receive as input a Query List of entities referred to by nodes in the pathway network. En-
tities in a Query List could be any combination of genes, enzymes, chemical compounds,

or reaction events in the pathway network.

3. Receive as input a definition of Response Groups to discriminate. Response Group
compartmentalization must be flexible; Response Groups can be the set of all functional
pathways in the network, all reactions in the network, or the set of all compound classes

in the network, for example.

4. Response Groups must be able to overlap on entities; Entities, both members and non-

members of the Query List, must be able to be members of multiple Response Groups.

5. The set of all Response Groups need not cover then entire pathway network; not all

nodes in the pathway network are guarranteed to be a member of any Response Group.

Background Terminology

A graph or network is a set of vertices or nodes connected by a set of edges.

A connected component in a graph is a set of nodes and edges where there is a path

from._each. node in the connected component to all other nodes in the connected component.
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An adjacency matrix, Cyxy, 1S a square matrix representation of a graph with N
nodes, where C;; indicates the weight of the edge from node ¢ to node j. Zeros indicate the
absence of an edge and unweighted graphs use the same weight value througout all existing

edges. Undirected graphs have the property of symmetry where C;; = Cj;.

A stochastic matrix is a matrix whose rows and/or columns sum to one. If the rows
sum to one, the matrix is right stochastic. If the columns sum to one, the matrix is left

stochastic. 1f both the rows and columns sum to one, the matrix is doubly stochastic.

A state transition probability matrix, Ayxn, is a stochastic adjacency matrix where
A;j represents the probability of a transition from state (or node) j if the system is currently

in state 7.

A sparse matrix is one which contains mostly zeroes. A sparse matrix can be stored
in a way that avoid storing zero-values, saving space and compute time in operations on the
sparse matrix. In contrast, a dense matrix is one with relatively few zeroes. Large, dense

matrices are difficult to process because they contain such a large number of values.

Omics refers to high-throughput biological experiments which quantify a large number
of variables (thousands, or even millions) simultaneausly during specific treatments or pertur-
bations. For example, genomics refers to the study of an organism’s genome, transcriptomics
refers to the study of all RNA-encoded gene transcripts in an organism’s transcriptome, and
metabolomics refers to the study of all metabolites in an organism’s metabolome. Analysis of
Omics experiments generates lists of entities (genes, metabolites, etc) selected based on specific

behavior.
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Existing uses of flow simulation
Graphical Clustering

Flow simulation is used by the tool MCL (”Markov Clustering”) (van Dongen, 2000). Input
is an undirected, weighted network of nodes edges. The algorithm take successive powers of
the stochastic state transition probability matrix, with an inflation step at each iteration based
on a single inflation parameter which degrades low-flowing edges until they vanish, creating a
set of connected components which represent the resulting clusters. This method is useful for
clustering data based on the structure of some meaningful undirected graph representing it,

such as a correlation network as in Mao et al. (2009).

The Random Walk Kernel

Graph kernels are functions which take as inputs adjacency matrices for two graphs and
return as results some metric that usually compares the two networks (Vishwanathan et al.,
2010). A random walk kernel is a kernel which conducts operations on the input matrices
which simulate random walks along the edges of the input matrices’ networks. Towfic et al.
(2010) have used a state transition probability matrix multiplication called the random walk

kernel to infer homologues from protein interaction networks.

Exsting methods model undirected flow. Many kernels and other stockastic flow-
based methods for processing networks assume the network is undirected. This means edges in
the network pair their respectively connected nodes in no particular order. Conversely, directed
networks’ edges have a specific ordering; one of the nodes a directed edge connects is the
source and the other node is the target. The direction of the edges goes from source to target.
However, biochemical pathways are often modeled as directed networks. Nodes in a pathway
network represent both physical entities such as genes or enzymes, as well as intangible events
such as chemical reactions. Edges between such nodes represent interaction (ie regulation or
conversion) and/or participation in an event (ie catalysis of a reaction). Direction is necessary

to indicate the direction of reactions, ie, which participants are catabolized and which are
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anabolized in a particular reaction.

Other graph theoretical metrics and properties

If we model metabolism as a directed network, there are many well-studied metrics and
methods for analysis available. Betweenness is the measure of a graph object’s (node or edge)
centrality in the graph by counting the number of shortest pathways between all nodes in the
graph pass through it. Degree/Hubness is the number of edge connections to a particular node
in a graph. Density is a measure of the number of edge connections in a graph, calculated
by dividing the number of edges in the graph by the maximum non-redundant edges possible
(Opsahl et al., 2010). Scale-free networks have a degree distribution that follow a power
law, which is a relationship between two quantities (here, it is node degree and node degree
frequency) where one quantity is a power function of the other. Natural networks are often
scale-free because it is often the case where there are a few highly connected central hubs in

the network while the rest of the nodes are less connected (Barabasi and Bonabeau, 2003).

Modeling directed random walks

Directed flow simulation is possible using stochastic state transition probability matrices,
but the matrices are not guarranteed to be doubly-stochastic. Here, we conceptualize only
right-stochastic state transition probability matrices by using them to represent a random
walk on the network of a finite number of steps; in a given step in a random walk on the graph
represented by right-stochastic state transition probability matrix, Ay« n, if we are standing
at node i, we must take a step somewhere, so the sum ) A; must equal one. On the other
hand, if a random walk in Ay y lands on node j, the sum } A.; may be less or greater than
one, indicating the walk hit j, but may not have come from any other node, or have an invalide
probability greater than one, respectively. We will avoid the non-left-stochastic contradiction
by only considering random ”forward” steps from i to j on edges Aj;;.

For a state stransition probability matrix, Ay« n, the state stransition probability matrix

in exactly w steps is A¥; the probability of transitioning from state i to state j in w steps is
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AY;;. Therefore, the sum of successive powers of A up to AY, My xn would be the matrix of

hit rates in a random walk of length w steps (Equation 4.3).

Anxny = The directed, non-symmetric state transition probability matrix  (4.1)
A = Cyj/ Z C;. (4.2)
w
Myxn = Z A?, for a random walk of w steps (4.3)
s=1

Given a biochemical pathway network represented by a weighted adjacency matrix, Cnxn,
we can row-stochastize it to fit the form of A in Equation 4.1 by dividing the values in C
by the sum of their respective row as in Equation 4.2. This simple process is not often used
on large networks (thousands of nodes or more) because computational space limitations.
Indeed, adjacency matrices for most networks are sparse, but as successive powers are summed,
the result quickly because dense and difficult to process. Fortunately, biochemical pathway
networks, while sparse, contain several hub nodes, which are highly connected to the rest of the
network (ie, water and energy molecules), allow relatively short random walk models (10-20
steps) to cover most of a pathway network. The resulting matrix M is the matrix of hit rates
on random walks between nodes; M;; is the hit rate at j of random walks of size w steps

starting at ¢. Generally, we call this metric 'random walk flow’.

Summarizing random walk flow between groups of nodes

Our original problem involves a list of nodes in a pathway network and comparing it to
different groups of nodes in the same network. For example, our query list might be a list of
genes that are differentially expressed under a specific condition and the response groups could
be the functional pathways defined by common biological knowledge (a pathway is a subset of
nodes and edges in the entire network that are commonly associated with a specific process
or function, ie glycolysis). To summarize the flow between a query list and a given response
group, we take the sum of flow (or random walk hit rates) between nodes in the query list

and nodes in the response groups. This is a simple matrix operation using a reponse group
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membership indicator matrix, Y yxqg, where T, = 1 if node n is a member of response group
g and zero otherwise. The matrix product of the matrices Myxny and YT yxa, Yyxg contains
the the sums of flow from each node and the nodes in each response group (Equation 4.4). We
then take the matrix product of an indicator vector, Q1xn, and ¥y, where @, = 1 if n is
in the query list and zero otherwise. The result, ©14, is the vector of sums of flow from the

nodes in the query list to the nodes in each response group (Equation 4.5).

Unwg = MynxnYTNxa (4.4)

where T,,, = 1 if node n is in response group g, 0 otherwise

®G><1 = (Q?VXllI}NXG)/ = (Q/le (MNXNTNXG))/ (4-5)

where @), = 1 if node n is in the query list, 0 otherwise

Reversing directionality

The previous formulation results in random walk flow summarizations from the query list
to response groups, ie pathways which genes in a query list regulate. The question of what
is regulating the query list, or signalling its members to change behavior, is often equally or
even more interesting. We can reverse direction rearranging the matrix multiplication to result
in another vector of flow rates for each response group, only these represent flow summaries
from the response groups to the query list (Equations 4.7-4.9). We must first re-initialized the

(rev)

random walk rate matrix, A, as A by left-stochastizing the adjacency matrix (Equation 4.6)

because reverse direction focuses on backtracking the directed graph using arrival probabilities

(rev)  1If we sum the flow rates in both directions at the

which are represented by columns in A
U step, we get flow rate summaries between the query list and each response group overall (in

both directions) (Equation 4.10).

A = 0y Y0y (4.6)
My = YA (4.7)
s=1

www.manaraa.com



45

WEN = ThaaMYIN (4.8)
@(Grivl) = \I/(G’riUJQIQNX1 - ( /N><GMJ(\7[“>6<IRI) Qnx1 (4.9)
O = (Qyu(Tnxc + (TER))Y (4.10)

Modeling and testing values in ©, ©("¢?), and Ot

After obtaining metrics for random walk flow between the query list and each response
group, we would like to discriminate which metrics are significantly high; these are the response
groups which are highly connected to the query list in a specific direction. This might be
accomplished by a statistical test of the null hypothesis that the observed random walk flow
between a response group g and the query list is equal to that of a randomly selected query

list and g. There are two complicating considerations for designing such a test.

1. Response group size. The number of nodes and edges in a reponse group is variable.
Therefore, we must account for the assumption that larger response groups are more likely
to have higher random walk flow with a query list than smaller response groups. Using
mean flows instead of sums between the nodes in the query list and each response group
may account for this, because it would penalize larger resopnse groups. However, means
would also complicate the matrix operations we use to summarize the flows. Further,

mean metrics are susceptible to outliers, which could bias our model.

2. Response group connectedness. In addition to size, response groups have different general
connectivity with the rest of the pathway network due to its inherent structure. This can
also cause bias in flow metrics where more connected response groups are more likely to
have higher flows with a query list than smaller response groups. While there is likely a
correlation between response group size and connectedness, it is not guarranteed, so we

must account for all combinations of size and connectivity.
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The underlying flow distribution

We begin with a bootstrapped assessment of the distribution of values in the M matrices
(Equations 4.3 and 4.7). Most of these non-negative values are near zero, with a skewed
upper tail containing those higher random walk flow relationships. A common probability
distribution with these properties is the Exponential distribution, which is often used to model
waiting times for an event to occur, such as the time until a light bulb will burn out. If we plot
our bootstrapped sample from observed flows for random walks of w = 10 steps on the EcoCyc
pathway network (Keseler et al., 2009), we see a good fit to an Exponential distribution (Figure

4.1) for values more distant from zero.
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Figure 4.1 General assessment of fit to an Exponential distribution for val-
ues in M (a) and M) (b) on a given pathway network. Each
assessment includes a histogram with a fit Exponential density
and Quantile-Quantile plot for all values in the matrix (top)
and values greater than 0.005 (bottom) from 10-step random
walk simulations on the EcoCyc pathway network.
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The Exponential distribution has many useful properties such as memorylessness (Pggp, (X >
t+6|X > t) = Ppgp, (X > §), where X is the rate parameter, ¢ is a length of waiting time,
and ¢ + 0 is a longer waiting time). Another useful property is that the sum of k independent
and identically distributed Exponential random variables with rate parameter A follows what
is called the Erlang distribution with shape parameter k& and rate parameter A. The Erlang
distribution is a special case of the Gamma distribution where the shape parameter is an in-
teger. Since our matrix multiplication in Equations 4.5 and 4.9 actually sum M values for a
given query list in each response group, we can assume that the values in the © vectors each
follow a different Erlang distribution with same shape parameter equal to the size of the query
list and different rate parameters (Equation 4.13). We can use the same model for the reverse
direction (Equation 4.14) and total in both directions (Equation 4.15), where k is doubled

because the values are summed twice- once for forward and once for the reverse direction.

M;; ~ Exp(\) ,where X is the inverse of the mean of all values in M (4.11)

MI) Exp(A\"e)) where A% is the inverse of the mean of M (") (4.12)

©, ~ Erlang(k,)y) ,where k is the size of the query list (4.13)
@g"e”) ~ Erlang(k, )\g’e”)) (4.14)
@gmﬁ) ~  Erlang(2k, )\éwt)) (4.15)

Assessing the Erlang-based model involves a Monte Carlo simulation where, for a given
query list size, k, we repeatedly draw a random query list of k entities out of the pathway
network and compute O, O¢?) and O each draw, building a multivariate (in the number
of response groups) sampling distribution for each ©. For a given reponse group, we then
fit an Erlang distribution to the simulated results using the convenient Erlang distribution
property that the rate parameter equals the ratio of the shape parameter to the mean. With
this ternary relationship, we can estimate the rate parameter and by taking the ratio of the
shape parameter (k) to the mean of the Monte Carlo simulation. As with the Exponential

distribution above, for a given query list size and response group, we can then inspect fit by
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plotting the histogram of the Monte Carlo values with the density of the fit Erlang distribution

as well as creating a Quantile-Quantile plot for each of ©, ©(¢?) and © ot (Figure 4.2).

Response Group -> Query List Flow Rate

k= 123 1= 42.92 kimu= 43.68 Erlang(k,r) QQ plot: Response Group —> Query List Flow Rate
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Figure 4.2 FErlang assessments for arbitrarily selected pathway response
groups after random walk simulations of w = 10 steps on the
EcoCyc pathway network and 100 Monte Carlo simulations of

flow rates with a query list of size k = 123. The three rows

are assessments of the O, @g’”"’”), and @ét”t) values, respec-

tively, where g is the tRNA charging pathway (a) and putrescine
degradation II (b).

Hypothesis Testing

After establishing an Erlang-based model for our test statistics, ©, ©("¢%) and 02! we
can define a null hypothesis to test for each © vector and each response group. We stated earlier
that the goal is to test the case where there is no flow relationship between a response group
g and the query list, so our null hypothesis, H,, is that the unknown true rate parameter, )\;,
equals the Monte Carlo-estimated Ay, which can be interpreted as the rate parameter for flows
between unrelated query lists and response groups (Equation 4.16). We make the analogous

null hypotheses for the other two © vectors (Equations 4.17 and 4.18).
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Hy @ Aj=)g (4.16)
H(()'rev) : )\;(m) _ )\grev) (4.17)
D (4.18)

(4.19)

The alternative hypothesis should reflect a high flow rate between the query list and the
response group g; a random query list drawn from the set of nodes which are biologically linked
to response group g would follow an Erlang distribution with the same shape parameter, k, but
a larger rate parameter, \,. Therefore, the counter hypotheses are the upper-tailed alternatives

in Equations 4.20, 4.21, and 4.22.

Ha @ N> (4.20)
HX‘@’U) . )\;(7‘81}) > )\grev) (4_21)
Ho(tot) : )\;(wﬂ > )\S(]tot) (4.22)

And we reject Hy if the observed ©, falls above the (1 — o) percentile of the Erlang
distribution with shape £ and rate A;, where « is a selected Type I Error Rate, which is the

rate at which the null hypothesis is rejected incorrectly (Equations 4.23, 4.24, 4.25).

Reject Hy if Py, (X > 0g) < a (4.23)

Reject HY ) if Py ., (X >0y) <a (4.24)
kg

Reject HY™ if  Poy_ (X > 64" <a (4.25)
g

Multiple testing correction

When multiple hypothesis tests are conducted simultaneaously, the Family Wise Error Rate

(FWER) is inflated by the number of tests; If we conduct 10 tests, each with a = 0.01, each
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test has a 1% probability of making a Type I Error, but the overall probability of making a
Type I Error is the sum of each «, or 0.01 x 10 = 0.1. The multiple testing problem has been a
focus for microarray processing because families of tests are conducted on thousands of genes in
this field creating strong demand for clever correction methods. The most straight-forward and
conservative correction, named for Bonferronni Holm (1979), simply uses a corrected « value
for tests equal to the original desired Type I Error Rate divided by the number of tests, o/ = P
where m is the number of tests. Several more complex methods exist which focus on the False
Discovery Rate and estimate parameters for the specific distribution that p-values follow for
microarray experiments (Storey, 2003; Storey and Tibshirani, 2003; Storey et al., 2004; Fodor
et al., 2007), where p-values are uniformly distributed between zero and one with a spike near
zero containing the relatively large set of genes perturbed by the experiment. Unfortunately,
p-values for response groups are not always expected to follow such a distribution because there
are often only a few significant response groups in one of our analyses. For this reason, we
discretionarily use Bonferronni correction to correct for multiple testing where an independent

test is conducted for each response group.

Applications Using Our Web Tool

In order to validate our method on real data and present our web tool, we will walk through
a use case where we use the web tool (Figure 4.3) to discriminate response groups from the

EcoCyc pathway network.

Use Case: LipidA inhibition in E. col:

The data for this use case comes from the GEO (Barrett et al., 2009) dataset accession
GDS3597 by Zhu et al. (2009), who investigated transcriptional regulation by FabR of the fatty
acid biosynthesis genes fabA and fabB in the presence of endogenous and/or exogenous unsat-
urated fatty acids. Among other factors in their experiment, gene expression was measured in
a control and treatment with CHIR-090, an antibiotic which inhibits the biosynthesis of Lipid

A (Figure 4.4, Barb et al. (2007)). Lipid A is the anchor by which lipopolysaccharides attach
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Figure 4.3 The main page for beginning an analyses with our web tool. It
takes three simple inputs: 1) a list of BioCyc IDs which can
be looked up using our mapping service (Figure C.1), 2) the
pathway network, and 3) the response groups to discriminate.

to the outer membrane of gram-negative bacteria, which provide much of the cell’s structural

stability and are also recognized by immune systems.

The query lists were generated using GEO’s T-test data analysis tool. Single-tailed
tests at the 90% confidence level for ”control < treatment” and ”treatment > control” created
a query list for up-regulated genes and down-regulated genes, respectively. These lists are not
actually genes, but probeset identification numbers which do not exist in our reference pathway
network, EcoCyc. Fortunately, our web tool includes a mapping service for the Affymetrix
probeset IDs on the platform used by GEO dataset GDS3597, which takes as input the list
of probeset IDs and presents us with the corresponding EcoCyc IDs, which our web tool can

process (ID Lookup on Figure 4.3 and Figure C.1).

Up-regulated genes

123 EcoCyc genes were identified from the list of probesets switched higher when lipid

A synthesis was inhibited. We can then discriminate each of two sets of response groups
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hydrophobic binding tunnel

W
Domain Il

Figure 4.4 CHIR-090 binds the LpxC enzyme, preventing it from catalyz-
ing the committed step in Lipid A biosynthsis. Image from
Barb et al. (2007).

(Response Groups on Figure 4.3).

Pathway Response groups were discriminated first. When we click Submit, the web
tool displays our current parameters on the left with three plots: one for each of the forward
direction, reverse direction, and total, respectively (Figure 4.5). The default is to use Bonfer-
ronni correction at the 95% confidence level and the red cutoff lines are drawn accordingly.
Response groups that fall above the red lines have significantly high flow with the query list
and are listed below with p-values. We can also hover over response groups in the plots to see
their names and p-values. There is also a set of icons and buttons to help navigate the web
tool (Table C.1).

The superpathway of KDO»-lipid A biosynthesis is the only pathway that is a significant
successor (downstream in the directed pathway network) to our query list of up-regulated
genes, with a p-value less than 0.0001. This is the expected result when the cells are unable
to produce the lipid A they require for membrane structure; they are increasing their efforts
to produce more lipid A. The CpxAR Two-Component Signal Transduction System is the
only significant predecessor (upstream) pathway to our query list of up-regulated genes, with

a p-value less than 0.0001. This is a signalling system which senses cell envelope stress (Wolfe
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Figure 4.5 Results are visualized with a plot of the response groups for each

direction and the total. The Y-axes are ©, ©(¢?) and ©(to!)

respectively. The X-axes are the inverses of A\, \¢?) and (o0,

respectively, which are also the expected values of the ©’s for
the respective Monte Carlo simulations. The red lines mark
the null hypothesis rejection cutoff, given the confidence level,
correction, and A value (X-coordinate).

et al., 2008), which is also expected because the we can interpret our results as evidence for
CpxAR signalling the increased expression of the genes in our query list. The CpxAr system
responds to cell envelope stress and regulates transcription of the porin genes ompF and ompC,
and a loss of function mutation in cpxAr can result in increased transcription of ompC and

decreased transcription of ompF (Batchelor et al., 2005).

Reaction response groups can give us a more precise idea of which events in the
pathway network are related to a query list. We start a new analysis, enter the same query
list, select the same EcoCyc network, but select a different set of response groups: the EcoCyc

reactionsswHachsresponsesgroup contains one reaction event node in the network plus all of
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the participants, both input and output. Now, results plots are not of pathways, but reactions
in EcoCyc (Figure 4.6). Discrimination of reactions produce much longer lists of significant
response groups. To get an idea of how many are significant in each direction, we click the
Download PDF button to see the same plots along with a Venn Diagram of the counts of

significant response groups (Figure 4.7).
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Figure 4.6 Points on these scatter plots represent EcoCyc reactions. Again,
reactions above the red lines are significantly related to the
query list containing up-regulated genes.

If we click the Response Group IDs button, we can download the BioCyc IDs of the signifi-
cant successor (forward direction) reactions. We then used the JavaCycO software (Van Hemert
and Dickerson, 2010b) and Cytoscape (Shannon et al., 2003) to visualize the significant reac-
tions within their integrated network of respective pathways and highlight the members of
the query list and the significant reactions (Figure 4.8). Blue-marked reactions are described
in Table C with descriptions taken directly from EcoCyc. These reactions include several
phospholipid-building reactions, which is consistent with our conclusion from the pathway
response groups that if lipid A synthesis is inhibited, cells invest in compensating for its de-
pletion. We also see in the list the Arabinose-5-phosphate isomerase reaction, which produces
the first precursor to keto-deoxyoctulosonate ("KDO”). KDO is an antigen that is anchored to
the outer membrane by lipid A (Figure 4.9) (Raetz et al., 2006). Since the genes in our query

list_are_up-regulated, cells not only respond to lipid A inhibition by attempting to produce
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Figure 4.7 The circle labeled Q< —R” is the set of significant response
groups in the reverse direction. The circle labeled "Q— >R” is
the set of significant response groups in the forward direction.
The circle labeled ”Q< — >R” is the set of significant response
groups in the tests for flow in both directions.

more lipid A (the anchor), but they also respond by attempting to produce more KDO. A
hypothesis might be that cells use the same sensing mechanism to determine their amount
of functioning lipid A and KDO. Further, the OmpR phosporylation reaction is significant.
OmpR is phosphorylated by EnvZ when osmotic pressure drops in the cell disrupting home-
ostasis. Phosphyrlated OmpR binds promoters for the ompF and ompC genes which code for
the OmpF and OmpC porins (Batchelor et al., 2005). We could hypothesize that the inhibition
of lipidA disrupts osmotic homeostasis and the cell responds by attempting to produce more
pressure-relieving porins.

We can conduct the same analysis for the significant predecessors (reverse direction) re-
actions to our query list containing up-regulated genes. The list or significant reactions is
shorter and the list of significant reactions that are part of pathways is shorter still (Figure
4.10). The significant reactions in the pathways are listed in Table C. This list is made up of
several reactions which phosphorylate nitrate and nitrite sensing response proteins and others
which activate ArcAB, which has recently been found to not only regulate general anaerobic

growth, but also plays a role in resistance to reactive oxygen compounds (Loui et al., 2009).
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Figure 4.8 The integrated pathways containing significant successor reac-
tions. Significant successor reactions are marked blue while the
members of the query list which happen to also be in this subset

of pathways are marked red. Node types are color-codes as fol-
lows: Yellow=Gene, Turquoise=Proteins, Green=Metabolites,
Grey=Reactions.

Down-regulated genes

81 EcoCyc genes were identified from the list of probesets switched to lower expression

when lipid A synthesis was inhibited.

Pathway response groups are plotted in Figure 4.11. When conservatively using Bon-
ferronni correction, two pathways were significant, but some pathways seemed to be plotted
very near the significance cutoff line. We adjusted the confidence level to 99% and unchecked
the Bonferronni option to be slightly less conservative with our Erlang tests, which resulted in a
total of four significant pathways instead of two. The TorSR and ZraSR Two-Component Signal
Transduction Systems are the significant successor (forward direction) pathways to the query

list. The TorSR system re

: b I I I
. | A"
h.'.-“l__J L-..n.-..-..--"_"'}i'l AJ

ulates use of Trimethylamine N-oxide (TMAO), which is both an
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Figure 4.9 The saccharolipid Kdo2-Lipid A. Glucosamines are blue, KDO
is red, acyl chains are black and phosphate groups in green.
(Raetz et al., 2006)

osmoprotectant and alternative electron acceptor during anaerobic respiration (Ansaldi et al.,
2000). The ZraSR system senses toxic levels of zinc and lead in the periplasm. The CpxAr
Two-Component Signal Transduction System and Acetoacetate Degradation to Acetyl CoA
pathways are the siginificant predecessors (reverse direction) to the query list. Recall that the
CpxAr system also appeared in the signifcant predecessor pathways of the up-regulated query
list, a contradiction that might be explained by incorrect selection of confidence intervals for
the query list generation and/or the Erlang tests. In this case, the CpxAr system has an ex-
tremely low p-value, so if we adjust the confidence level for the Erlang test, it will not drop out
of either the up-regulated pathways or the down-regulated pathways. If we adjust the confi-
dence level for the T-tests used to generate the up- and down-regulated gene lists, we can check
whether the Erlang test results change. After entering query lists based on T-test at the 95%
confidence level, results for the up-regulated pathways in both forward and reverse directions as

well as down-regulated successors (forward direction) remained constant, while down-regulated
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Figure 4.10 The integrated pathways containing significant predecessor re-
actions. Significant predecessor reactions are marked blue
while the members of the query list which happen to also
be in this subset of pathways are marked red. Node types
are color-codes as follows: Yellow=Gene, Turquoise=Proteins,
Green=Metabolites, Grey=Reactions.

predecessors (reverse direction) changed from CpxAr to the DpiAB Two-Component Signal
Transduction System, which regulates citrate fermentation genes. The DpiAB system is also
known to interrupt chromosome duplication in the SOS response (Yamamoto et al., 2008).
Acetoacetate degredation feeds carbon energy into the TCA cycle (Pauli and Overath, 1972)

and genes for this production are negatively regulated by ArcA.

Generating hypotheses

After completing our web-based analysis of the two query lists of genes, we can hypothesize
a model for E. coli decision making when lipid A is inhibited. We clearly saw activity relavent
to the cell’s boundary (envelope and periplasm), which is consistent with our understanding of

the utility of lipid A. We can further use our results to postulate a model for the cell’s priorities
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Figure 4.11 The same plots from our web tool as Figure 4.5, but the query
list here contains the down-regulated genes.

when it is under this type of stress using Table 4.1 to organize interpretation of the response
groups. Our model is as follows (entries in Table 4.1 are in ”()”): Lipid A inhibition causes a
breakdown of the cell’s structure and osmotic stress, which the cell senses and responds with
several different decisions. Firstly, it activates the genes to produce both the inhibited lipid A
(1) and the KDO (2) that the lipid A should be anchoring to the cell membrane. It also shifts
priorities away from growth (6,9), toxin sensing in the periplasm (5,9), and osmoprotectant
production (7). OmpR activation is increased because both the OmpC and OmpF porins
production require it (3), but since the promoter for ompf has higher affinity for OmpR-P
than the promoter for ompc, ompF transctription is specifically decreased using a separate
mechanism (4) so that only OmpC porins are produced (Figure 4.12). Most of these inferences

are consistent with the literature, and we can hypothesize that the cell knows that the osmotic
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stress is caused by structural insufficiencies and not by a severe change in solute concentrations,

so it chooses not to produce osmoprotectant.

Table 4.1 Interpretation of different flow simulations and tests.

H Successors (forward) Predecessors (reverse)
Activated by the query list Activate the query Iist
1. KDOs-lipid A biosynthesis 4. CpxAR signalling
Up-reg 2. Arabinose-5-phosphate isomerase 5. nitrate and nitrite sensors
3. OmpR phosporylation 6. ArcAB

De-activated by th list

e-ac 1va.e 'y © query s De-activate the query list
7. TorSR signalling . . .
Down-reg 8. ZraSR signalling 9. DpiAB signalling

Discussion

The main weakness of our method is sensitivity to missing information from the path-
way network; our method does not directly infer new pathway models. Rather, it presents
existing, complex knowledge about pathways in the context of a list of entities to generate
hypotheses. If an entity in a query list is not understood, the best we can do with our method
is assume ”guilt by association” and infer its involvement in the response groups we associate
with the well-understood entities in the query list. This is especially true for query lists made
entirely of genes because genes are usually leaves on branches of the pathway network with flow
only from the gene to the rest of the network via translation to enzymes; these cases cannot
produce results for the reverse direction because there are no flows into the query list. Re-
verse flow results are only possible when the pathway network contains an adequate amount of
gene-regulatory relationships, which are represented by edges and flows into genes. Cycles and
feedback loops might create ambiguity between significant successor and predecessor response
groups.

We have developed a method and tool which leverages organism-wide pathway models for

interpreting Omics data and generating hypotheses. It accomplishes our original objectives:

lmReceivesassinputsasbiochemical pathway network structure, a Query List of entities, and

www.manaraa.com



61

Produce more lipid A

Activate DpiAB

Produce more KDO

Stop periplasmic toxin sensing Activate OmpR Activate CpxAR

Y

Produce more OmpC S0s Stop growth

Produce more OmpF #

Figure 4.12 A model for E. coli responses to lipid A inhibition based on
results from our web tool and confirmed by literature. Red
boxes are the initial signals, blue boxes are the intermediate
responses, and yellow boxes are the final responses.

a set of Response Groups to discriminate.

2. Visually and interactively present hypothesis test results for decision support and discre-

tionary test parameter adjustments.

3. Entities in a Query List could be any combination of genes, enzymes, chemical com-

pounds, or reaction events in the pathway network.

4. Response Groups can be the set of all functional pathways in the network, all reactions

in the network, or the set of all compound classes in the network, for example.

5. Response Groups can overlap on entities.

6. The set of all Response Groups need not cover then entire pathway network.
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7. The hypothesis test accounts for both Response Group size and inherent connectivity

with the rest of the network.

We used our web tool to interpret Omics data from a simple E. coli microarray dataset,
verified the results with the literature, and generated new hypotheses. Future work includes
application to more diverse Omics datasets which include compounds and enzymes. Our tool
is compatible with output from the Markov Clustering software (MCL) by van Dongen (2000)
and we intend to investigate Response Groups defined by graphical clusters mined from large

metabolice networks. Lastly, the web tool is to be fully integrated with the PLEXdb.org (Shen

et al., 2005) website.
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5. EXPRESSION PLATFORM INTEGRATION AND INSIGHTS INTO
THE GRAPEVINE’S RESPONSE TO SHORT WINTER DAYS

A paper to be submitted to Plant Physiology

John L. Van Hemert !, Erin E. Boggess™?, Alberto Ferrarini 2, Massimo Delledonne?, and

Mario Pezzotti*, Anne Fennell 3, and Julie A. Dickerson'

Abstract

Besides being economically significant, The Vitaceae (the grape family) provides a unique
domestication history as well as strong responses to environmental signals, such as winter dor-
mancy. Mining gene expression data for biomarkers and pathway activity is a key component
to understanding the mechanisms controlling such responses in plants. In this paper, we share
our approach to pre-processing the data, exploratory analysis, additional data filtering, and
clustering transcriptomics data. Pre-processing included a technical study aimed at comparing
and integrated different expression platforms. Using results from the technical study, we were
able to extract dormancy-related genes from an original set of 16436, and then form biologically
meaningful clusters that supported interpretation of signaling activity and regulatory activity.

Our results provide insight into possible cellular mechanisms that occur at the onset of
grape dormancy, by investigating known biological processes related to overrepresented anno-
tation as well as examination of possible experimental variation within a treatment type over

time are necessary, we proposed biological explanations for our computational results. These
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explanations are the beginnings of new biological models for the underlying mechanisms during
photoperiod-induced bud dormancy in V. riparia. We observed transcriptional responses to

environmental signals as well as different groups of genes responding to one another.*

Introduction

The Vitaceae (grape) is comprised of a diverse collection of species that have been bred
to grow in a variety or climate conditions. In addition to being an economically important
crop, the grapevine represents a unique domestication history and sensitivity to environmental
changes and signals. For example, many grape species undergo a period of endodormancy, or
a non-growth phase, that typically corresponds to an inactive winter rest and is brought on
by conditions within the plant itself. Endodormancy regulation of grape buds is necessary for
plant survival during inclement winter conditions. The endodormancy phase is triggered by
the onset of a shorter photoperiod corresponding to the shorter days of winter in the Northern
hemisphere (Vergara and Perez, 2010; Kuhn et al., 2009; Perez et al., 2007; Noriega et al.,
2007; Fennell et al., 2005).

V. riparia is a species of grape that is cultivated in North America which is known for
its cold hardiness. The biological processes that V. riparia buds undergo at the onset of
endodormancy are not well understood, mainly due to small amounts of relevant tissue. Our
task in this project is to use multivariate methods to identify which genes, functional groups,
and pathways participate in endodormancy activities by examining the plant transcriptome
measured by Affymetrix Vitis Gene Chips (microarrays).

Multiple technologies exist that quantify the level at which genes are expressed. For the
past decade or so, microarrays (considered high-throughput technology) have been the tool
for that purpose. Of these, many different microarray platforms have been developed using a
wide range of design parameters including but not limited to oligo-nucleotide length, microchip

print technology, background fluorescence baselines, and oligo-nucleotide sequence selection.

4 Author contributions: Van Hemert conducted and wrote the technical comparison portion with advice
and discussions with Ferrarini, Delledonne, Pezzotti, Fennell, and Dickerson. Van Hemert and Boggess co-
wrote much of the single-platform Affymetrix-based analysis, specifically the GO Over-representation analysis
portions. Van Hemert developed the A-based MANOVA statistics and conducted the pathway flow analyses.
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It is not uncommon to find several to thousands of experiments using different microarray
platforms on the same organism or tissue (Barrett et al., 2009). Meta-analysis, or pooled re-
analysis with increased statistical power, of such an organism requires some sort of integration
of the datasets generated by each platform (Xiong et al., 2010).

In the past, microarray platform integration has been of interest to medical researchers
because they sometimes need to increase power by merging different studies done on different
platforms with different patients in order to answer similar questions. The first problem in
platform integration is that there are usually genes uniquely measured by each platform. A
common solution is to omit those genes and join the experiments on the common genes mea-
sured, which are mapped to microarray oligos according to sequence similarity to the latest
gene models. Subsequent steps might integrate at different levels, with fluorescence intensi-
ties being the lowest level (Garrett-Mayer et al., 2008; Warnat et al., 2005; Shen et al., 2004;
Parmigiani et al., 2002), and platform-specific statistics (Rhodes et al., 2002) or gene sets (Choi
et al., 2003; Zenoni et al., 2010) being higher levels. The main problem is the trade-off be-
tween data level (lower is more precise) and confounded biological and platform effects, which
are less prevalent at higher data levels. Approaches to circumvent this problem range from
clustering all merged data to normalized observations against cluster averages (Shabalin et al.,
2008), to fitting merged data to models which attempt to accounts for platform effects (Choi
et al., 2003), to converting fluorescence intensities to platform-specific ranks or quantiles (Shen
et al., 2004). Platform integration methods are usually evaluated by calculating accuracy and
specificity rates when comparing results to common knowledge of a well-studied gene family
such as estrogen receptors in breast cancer studies (Tsiliki et al., 2009), leaving the specific
causes of errors to speculation; integration can be a form of benchmarking if the integration
method provides a metric for how well platforms integrate. Model-based approaches such as
Choi et al. (2003) and Xiong et al. (2010) are able to produce such metrics.

In more recent years, new methods appeared which measure gene expression using what are
considered ultra-high-throughput technologies. Next-Generation Sequencing actually observes

the nucleotide sequences of millions of segments from a sample which vary in length according

www.manaraa.com



66

to the specific technology. These reads are then assembled into longer segments using various
bioinformatics tools and eventually create a set of replicons from the biological sample. Other
tools are used to predict the locations and structure of gene models on the replicons. Deep
sequencing and RNAseq refer to heavy sequencing of short reads of RNA samples followed
by alignments of the reads to a pre-built genome. The depth to which reads overlap (called
coverage) indicates the level of expression of a particular region in the genome. Coverage for
a specified region has been quantified using the number of reads aligned to the region per the
region length in kilobases per the total number of aligned reads, reads per kilobase of exon
model per million mapped reads (RPKM) (Mortazavi et al., 2008).

Some platforms, like the new Nimblegen Vitis chips, were designed based on gene models
predicted from the genome and their probe positions are known. Other platforms, like the
Affymetrix 16k gene chip for Vitis, are based on older EST libraries and probes are placed
on the new genome using sequence alignments. Even conservative sequence alignments can
place probes incorrectly. Our other task is to use experimental data to identify Affymetrix
probes incorrectly placed on the genome and show how data from two or more platforms can
be integrated for more sensitive Next-Gen-like analysis of exon-level expression as well as refine

functional annotation based on experimental data.
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Results

Platform Integration for Exon Quantification
Alignment Filtering

We filtered Affymetrix probe alignments by fitting a mixed univariate normal model to the
correlation values and classifying pairs as ”false” when in the lower population and there is
low uncertainty (< .01). We can observe the filtered consensus alignments in GBrowse and
omit them from functional annotation transferred to lists of differentially expressed Affymetrix
probesets via gene models. With these data, we were able to filter 5,487 (2.75%) false
Affymetrix probe placements on the genome coming from 3,150 consensus alignments (Fig-
ure 5.1).

When we fit the multivariate linear model to our real data, we obtain estimates for the true
expression of individual exons. These estimates are called ”indirectly measured exons” and can
be added to the set of exons which are ”directly measured” by single probes fully contained
withing the exon. Depending on the genome coverage of the two expression platforms, we
cannot obtain an estimate for every exon in the genome; we only have estimates for exons
that are part of exon systems where the number of probes is at least as large as the number
of exons. Therefore, platform integration can improve exon coverage by creating more such
systems. In fact, the number of estimable exons for our integrated data set is larger than the

sum of the numbers of estimable exons for each platform’s data set fit separately (Figure 5.2).

Comparison to RNAseq data. To validate the exon expression estimations, we com-
pared them to RNAseq data using a separate data set where technical replicates were run on
both Nimblegen Vitis chips and transcript-sequenced using Illumina short-read sequencing. We
also compared the standard gene-level summarization of expression units with RNAseq data
(Figure 5.3. A small amount of correlation is lost when using our multivariate exon estima-
tions, but an increase in noise is expected when the focus shifts from the larger gene summaries
to more specific exon summaries (estimates) where there are one or more exon estimates for

eachsgenesestimatessThississa small tradeoff in cases where exon expression is the desired unit
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Table 5.1 Transcription Factor Families

Family | Odds Ratio | p-value
Cluster 2

bZIP 9.3 0.00000

C3H 8.9 0.00000

CO-like | 40.1 0.00000
Cluster 7

CPP 52.7 0.00000

NAC 4.2 0.00000

ERF 3.0 0.00000

C2H2 2.9 0.00004

bHLH 2.3 0.00038

of expression, ie alternative splicing detection. Further, exon estimates correlate with RNAseq
data as well as Affymetrix’ Human tiling array in (Agarwal et al., 2010), whose plots look
very similar to ours, including the lower-left region looking flat indicating zero correlation for

expression below the noise level.

Single-Platform Analysis of the Full Photoperiod-induced Bud Dormancy Data

We mined 770 dormancy-related genes (see Figure 5.4 for examples) from the data and
clustered them into 8 groups according to endodormant V. riparia expression patterns through
time (Figure 5.5). Functional annotations and pathways associated with different clusters
include cell wall restructuring, stress responses, and shift from energy use and growth to
energy storage in starch. Two of the clusters (2 and 7) likely contain transcription factors
(Figure 5.6). Each of these transcription factor-rich groups contain homologues to different
transcription factor families. Cluster 2 is enriched with bZIP, C3H, and CO-like transcription
factors (Guo et al., 2008). Cluster 7 is enriched with BHLH, C2H2, CPP, ERF, and NAC
transcription factors. See Table 5.1 for these lists of families along with odds ratios (proportion

in cluster to proportion in genome) and hypergeometric test p-values.
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Figure 5.1 The univariate model fit to the distribution of linked probe correlations (above)
and the positions of Affymetrix probes which fall into the lower population with
low uncertainty (below). Top-right shows the univariate 2-Gaussian model fit to
the top-right histogram in Figure C.4. The left mode is the population of poor,
zero-center linked probe correlations and the right mode is the population of linked
probes where the Affymetrix probe is correctly aligned. Top-left shows the plot
of uncertainty when attempted to classify a linked probe as good or bad, given
a correlation value (x-axis, same as top-right). We selected Affymetrix probes
from linked probes in the lower population with low uncertainty for removal from
chromosome alignments. Some examples are plotted in GBrowse in the lower three
plots.
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Theoretically Measurable Exons
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Figure 5.2 Estimability of exons improves when platforms are integrated. Red bars show the
number of estimable grapevine exons by unspliced microarray probes (”Directly
Measurable”) for each separate platform, Affymetrix (”Affy”) and Nimblegen,
and after integration by pooling and normalization. Blue bars show the number
of estimable exons by applying our probe-exon system model (”Indirectly Mea-
surable”). These are the exons missed by standard exon summaries because they
are only measured by spliced probes. Notice that the sum of two individual blue
bars is less than the blue bar after integration.

www.manharaa.com




71

Exon-level correlation=0.76 Gene-level correlation=0.83
N .
o0
°
o =
o N
i
o
. >
< +
- WL @ ©° oo
o e 4 o
= | . At L 7 o
o+ e &‘ﬁ*“ ¢} o ”
. = s
%) A e e S %) °
= LI PR S A = o o
b= ‘ PR i R = ol
. F AT e fTee . = p 8 < e
E; sl T : f
5 R = UL AN 5 o B ow AT
2 3 PUFCATA ity =3 o ° o 5 2
¥ i B
k: & T fg} VARREE g TS
g Lt o £ by 8000 & 8
£ . ‘¢;‘1$§¢wg§;wi“_:_§; [ o o o &
= L e e T R 5 LS = . % Yo
g Lty #74 ,@%&‘ﬁ%ﬁ R o ° o 8o P, B
L e T R A LY B O 0 o GRS
o o T + o+ g o o g 0% o 8
Wl 3 R P oY) N
3
~ Gg0 09 90030009‘%“ 27, 8 00
. 5 2 % namﬂu§g§gun
+ %o 00 %o Co %og 'fﬁ °
0 o, 5o SE0%onbd ol o
oo Do @ G o
o <P D, w3, ©°
8 o 89500 8% 2 o © o
o o o D§D ® pog 0% 0 0 T,
o 5 o g 8, ©og N
3 @ 0% o ©
- o ° 4 o o
” o
- 2 o 2 4 f - > o p 4 s
RNAseq RNAseq

Figure 5.3 Exon estimates using our probe-exon system model compare well with RNAseq
data. Points in the left plot are gene-level estimates and points in the right plot are
exon-level estimates using our multivariate model. Microarray values were RMA
normalized (including log-transformation) and RNAseq FPKM (Trapnell et al.,
2010) values were log-transformed. We would expect a decline in correlation using
our probe-exon system model due to a larger number of data points alone. Other
causes may include non-linearity in splicing effects and cross-hybridization.
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Figure 5.4 Five selected gene profiles from the 770 dormancy-related genes. Each probeset
has four profiles— one for each treatment level combination and lines plot repli-
cate means. We mined for probesets with V. riparia short-day (purple, dashed
lines) expression unique for all other treatments. Notice how V. riparia behaves
differently during short photoperiod in all of these representative examples.
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Centroids of K-Means Clustering of Profiles
Gene expression profiles for V. riparia for short and long photoperiod treatments
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Figure 5.5 Centroids of gene expression profiles over the seven time points for the 770 gene
data set. Mean expression values were calculated from the values in the original
clusters (which themselves were median expression values over replicates) for each
time point for V. riparia under the short photoperiod treatment (blue). This cal-
culation was repeated with the corresponding V. riparia long photoperiod data
(yellow). Negative controls had 50% and 75% quantiles of 6.04 and 6.21 respec-
tively. No centroids exhibited expression levels in this range, meaning these genes
have non-zero expression levels. Of note are Cluster 1, which contains cell wall re-
structuring genes, Clusters 2 and 7, which probably contain transcription factors,
and Clusters 5 and 8, which contain energy use and storage genes, respectively.
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Figure 5.6 FEach cluster was compared to a set of reference transcription factors from Plant-
TFDB (Guo et al., 2008) made up of transcription factors from Vitis vinifera,
Populus trichocarpa, Glycine mazx, Oryza sativa, and Arabidopsis thaliana using
BLASTP. Each series is one of the eight clusters and the x-axis is the expect-value
cutoff for hits as it is made less conservative. The (log-scaled) y-axis shows Fisher’s
Exact Test p-values for the null hypothesis that the proportion of BLASTP hits in
the cluster equals that of the entire genome. Clusters 2 and 7 reach the most sig-
nificant p-values meaning they may represent transcriptional regulation patterns.
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Discussion

Platform Integration

Microarray platform integration can improve exon coverage using our probe-exon system
model. This can be useful if data exist for the same treatments on different platforms and
either the goal is to integrate and summarize or the goal is to compare the platforms at the
exon level. It also provides a model which takes advantage of spliced microarray probes,
conferring greater flexibility in microarray design; spliced probes become an asset instead of
a problem to be avoided. The probe-exon system model also accommodates overlapping gene
models as well as cross-hybrization events between probes by accounting for the distribution
of sample oligonucleotide fragments across multiple probes. Future work includes investigating
non-linear cross-hybridization relationships between probes and exons for even more flexibility

in microarray design.

Dormancy-related Genes

In this study, we successfully applied and adapted multivariate methods to effectively reduce
a high-dimensional data set to a collection of genes that demonstrate dormancy-related activity.
We then applied clustering methods to classify genes of interest into groups that exhibit similar
expression profiles over time. For each gene cluster, we searched for over-representation of
biological annotations, discriminated highly connected VitiCyc pathways, and compared them
to a reference set of transcription factors in order to form new hypotheses about cell response

to dormancy induction.

V. riparia genes in Cluster 1 show a spike in expression after about two weeks of
short-photoperiod, while expression is relatively constant during the longer photoperiod. Af-
ter about one month of short photoperiod, these genes’ expression drop well below their long
photoperiod levels. Overrepresented annotations in this group include lipid transport, carbo-
hydrate metabolic process (Biological Process); Hydrolase activity, polygalacturonase activity

(Molecular Function), and integral to membrane (Cellular Component) (Table C.4). Plants
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experience variation in photoperiod during the growing season, and must decide whether the
variation is due to growing season weather, or season change in Autumn. This cluster shows
that a strong transcriptional response occurs after about two weeks as the decision is made
that it is, in fact, time to enter dormancy. Pathway flow analysis also showed an initial spike
then decline in both energy use and cell wall activity (Table C.5). The behavior of genes in
Cluster 1 appears to be some sort of signalling response. However, since a relatively low count
and percentage of Cluster 1 genes were found in our transcription factor reference (Figure 5.6),

it probably does not involve direct transcription regulation of other genes.

V. riparia genes in Cluster 2 behave in a relatively parallel manner, with a strong drop
in expression in the first few days, followed by a sharp increase for the rest of the experiment.
At day 1, gene expression is much higher during short photoperiod than long. Since all plants
were under the same photoperiod treatment (long photoperiod) prior to the time experiment,
this group may represent a response to stimuli related to the experimental process (technical
perturbations), which are unobservable without more information. We were unable to reject
the null hypothesis of no enriched GO annotations for any genes in this group. The same is true
for pathway flow analysis at the 95% confidence level with Bonferonni correction. However, a
relatively high percentage of the genes in Cluster 2 are highly homologous to our transcription
factor reference set suggesting that Cluster 2 might contain transcription factor genes (Figure
5.6). Behavior similarity to Cluster 8 indicates Cluster 2 may contain the transcriptional

regulators of genes in Cluster 8.

V. riparia genes in Cluster 3 also showed approximately parallel time profiles under
long and short photoperiod, with significantly lower expression during short. Overrepresented
annotations in Cluster 3 include photosynthesis terms (Biological Process); glyceraldehyde-3-
phosphate dehydrogenase, NADP oxidoreductase, FMN binding, transcription repressor ac-
tivity (Molecular Function); and photosystems terms (Cellular Component) (Table C). Since
we conducted tests for stronger photoperiod effects in V. riparia than Seyval, the difference

in profiles we see for V. riparia is larger than any difference that exists between photoperiod
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treatment in Seyval; the photosystems in V. riparia are more sensitive to changes in photope-
riod. This might be necessary to recognize the environmental signals to enter dormancy. In
addition we noticed that these photosynthesis genes decreased expression over the time course
under the long photoperiod treatment, while we would expect that it is constant. Further
investigation with a pathway flow analysis showed (without Bonferroni correction) that gene
expression for enzymes that catalyze many energy storage pathways are shutting down during
the throughout the experiment (Table C.7). It remains to be discovered why these genes also

decrease expression under the long photoperiod treatment.

For V. riparia genes in Cluster 4, which shows a sharp drop in expression for short
days when compared to long days, we were unable to reject the null hypothesis for any anno-
tations. However, pathway flow analysis without Bonferroni correction results in a short list
of pathways including 13-LOX biosynthesis and phospholipases. This could be due to an over-
representation of phospholipase and lipoxygenase enzyme-coding genes in the cluster. It might
also contain unknown transcription factors, as Figure 5.6 shows a relatively high percentage
of Cluster 4 genes are homologous to our reference transcription factor set. Further, only five

of the 61 genes in Cluster 4 existed in VitiCyc at the time of analysis.

Cluster 5 behavior is similar to Cluster 3 and pathway flow analysis shows similar
redox pathways (Table C.9). Overrepresented annotations include acid phosphatase activity,
lipoxygenase (Molecular Function); apoplast, cell wall, and integral to membrane (Cellular
Compartment) (Table C.8). It is known that zinc inhibits cell wall acid phosphatases. While
not statistically significant, we did observe several genes annotated as zinc ion binding in
Clusters 2 and 4, where V. riparia genes exhibit higher expression during short photoperiod
than long for roughly the first two weeks. This happens to be roughly the time at which
Cluster 5 genes (over-representing acid phosphatase) begin to decrease in expression. It is
possible that some underlying mechanism uses zinc to regulate acid phosphatases as V. riparia
enters dormancy. Acid phosphatase activity is associated with the NADP+ salvage pathway in

VitiCyc (Van Hemert et al., 2010), and Cluster 5 seems to exhibit a relationship with Cluster
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8, described below.

In Cluster 6, V. riparia genes steadily increase expression at a faster rate during short
photoperiod than long, for about one month, then become roughly equal after 42 days. We
were unable to reject the null hypothesis for GO term enrichment on genes in this group. We
able to discriminate interesting pathways using the Pathway Flow tool including resveratrol
biosynthesis, which is associated with biotic and abiotic stress, and wax esters biosynthesis

(Table C.10).

V. riparia genes in Cluster 7 show a clear spike in expression around two weeks
after short photoperiod begins which does not occur during long photoperiod. These genes
then switch off during the rest of the time series, while, during long photoperiod, they re-
main relatively constant until day 42. Overrepresented annotations in this cluster include
phenylpropanoid metabolism, lipid transport, chromatin and nucleosome assembly, and cell
wall organization (Biological Process); structural constituent of cell wall (Molecular Function);
extracellular region, nucleus, chromosome, chromatin, and nucleosome (Cellular Component)
(Table C). This suggests that V. riparia bud cells increase chromatin production after about
two weeks of short photoperiod treatment and proceed to pack their DNA to prevent further
growth and enter dormancy. After about three weeks, these genes follow a sharp decline in
expression, which may be caused by the dormant state, when excess DNA packages is no longer
necessary. This support recent findings in Horvath (2009). Since VitiCyc lacks gene regulatory
information, our pathway flow analysis cannot check the chromatin and nucleosome GO anno-
tation results. However, it did detect cell wall-related pathways (Table C.12). A relatively high
number and percentage of members of Cluster 7 also showed homology to our transcription
faction reference set (Figure 5.6). Behavior similarity to Cluster 1 indicates Cluster 7 may

contain the transcriptional regulators of genes in Cluster 1.

Lastly, V. riparia genes in Cluster 8 increase in expression over the time course.

Overrepresented annotations in this group include RNA polyadenylation, response to oxida-
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tive stress (Biological Process); chitin binding, chitinase, antioxidant activity, peroxidase activ-
ity, phosphorylase, vitamin binding, and polynucleotide adenyltransferase activity (Molecular
Function) (Table C.13). The overall function of genes in Cluster 8 is to respond to oxidative
stress. Cluster 5 contains genes involved in recycling of energy molecules like NADP+, which
results in production of antioxidants. We propose an inverse relationship between Clusters
5 and 8 where bud cells adapt to an energy system change seen in Cluster 5 by protecting
themselves from oxidative damage using mechanisms represented in Cluster 8. Pathway flow
analysis reveals energy storage pathways including sorbitol degradation into D-fructose and

starch biosynthesis (Table C.14).

Likely transcription factor clusters include Clusters 2 and 7 because they reach the
most significant hit-enrichment p-values in Figure 5.6. Besides using cluster behavior to hy-
pothesize which clusters are regulated by these respective transcription factor groups, we can
use their functional annotation to explain the difference expect value cutoffs at which each
cluster reaches high significance. Cluster 2 reaches low p-values around very conservative ex-
pect value cutoffs (1e-100) while Cluster 7 reaches low p-values at higher, less conservative
cutoffs (1e-20). Cluster 2 is not well annotated, but Cluster 7 is enriched with chromatin
remodelling-related GO annotation. The transcription factor clusters also map to different
transcription factor families and have expression patterns similar to other non-transcription
factor clusters; Cluster 7 may represent the transcriptional regulators for the cell wall reorga-
nizing members of Cluster 1 and Cluster 2 may represent the transcriptional regulators of the
energy-storage-related genes in Cluster 8. Future work includes closer examination of these
putative transcription factors and their families along with promoter binding site detection of
their respective response cluster members.

Our results provide insight into possible cellular mechanisms that occur at the onset of
grape dormancy, by investigating known biological processes related to overrepresented anno-
tation as well as examination of possible experimental variation within a treatment type over
time are necessary, we proposed biological explanations for our computational results. These

explanations.are the beginnings of new biological models for the underlying mechanisms during
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photoperiod-induced bud dormancy in V. riparia. We observed transcriptional responses to
environmental signals as well as different groups of genes responding to one another. Lastly,
we have shown that GO term enrichment and pathway flow analysis can complement each
other in hypothesis generation. Further, our results detected pathways in VitiCyc that should
be removed because they do not occur in plants.

Future work requires re-clustering of the genes using a higher K value in order to glean
information about more intricate variations in expression profiles. Although we chose 8 clusters
for this project because it allowed for demonstration of data trends and minimized cluster
overlap, a much larger k is suitable for identifying smaller sets of genes that are involved in
the same process or are subject to the same regulatory mechanisms. Smaller clusters will also
be capable of more precisely differentiating between gene expression profiles and we can merge
clusters at our discretion.

We also plan to examine locations of genes in each cluster on the V. riparia genome
using our extensive web-based annotation system, which contains an interconnected GBrowse
and annotation BioMart. Recall that our data actually measures probes, or transcripts that
are portions of genes. Physical proximity of probes on the genome and correlated expression
profiles can suggest that they belong to the same gene. This exploration may also identify genes
that are co-transcribed and alternative splicing events. Currently this effort has produced an
experiment-wide information system at http://vitis.student.iastate.edu/VV18/ with cluster
behavior plots and cluster gene lists which link to both GBrowse views of gene locations and

annotations in our BioMart database.
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Methods

Six biological replicates from each genotype (Seyval and V. riparia) were grown in a green-
house under fixed conditions. Of each group of six, three were grown with a 13 hour (short)
photoperiod and the other three were grown under a 15 hour (long) photoperiod. Each repli-
cate was sampled at seven time points: days 1, 3, 7, 14, 21, 28, and 42. All plant specimens
were two to six year old vines. Prior to applying the photoperiod treatment, all plants were
grown under long day conditions until all vines reached 12-15 nodes. Vines were then random-
ized into groups for photoperiod treatments. Temperature was maintained at 2543 during
the day and 20+3 at night for all treatments. Samples were extracted from the plants using
a novel bud RNA extraction technique (Anne Fennell, unpublished). Microarray experiments
were performed for each RNA sample using GeneChip Vitis vinifera (grape) by Affymetrix.
This experiment, performed in 2007, was repeated in 2008 using the same replication. These
two years will be referred to as "year 17 and ”year 2”. The shorter photoperiod (13 hours
of sunlight per day) is intended to simulate the condition of approaching winter - the time
at which the plant enters endodormancy. The longer photoperiod (15 hours) is used as a
baseline from which we measure the effect of the shorter period. To differentiate between
genetic activity related to endodormancy and other activities (e.g., photosynthesis), another
grape species, Seyval, was examined. Seyval is a white wine grape plant that does not enter
endodormancy. By collecting data for both cultivars, it is possible to identify differentially
expressed genes across the photoperiod treatments, and then extract the subset specific to V.
riparia for further analysis of importance to endodormancy.

The entire experiment for both years resulted in 167 Affymetrix microarray hybridizations
because one replicate sample was accidentally lost or destroyed. Fach Affymetrix V. vinifera
microarray platform contains 16436 probes in all, made up of transcripts from V. vinifera as
well as transcripts from other Vitis species, based on a large expressed sequence tag (EST)
database in 2003. Additionally, the microarray platforms have positive and negative controls,
which are constantly expressed and not expressed, respectively, for all samples.

All Affymetrix data were downloaded from the Plant Expression Database (PLEXdb.org)
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(Wise et al., 2007), experiment VV18. At the time of this project, the data are not published

and remain available only to PlexDB user accounts which are part of the Fennell-led study.

Platform Integration Technical Study

Before the single-platform Affymetrix results, the first part of this work entailed a technical
comparison of the data based on a subset of the data points where samples were hybridized
on Nimblegen "MD” Vitis and Affymetrix Vitis platforms in technical replicates (Table 5.2).
This preliminary technical study resulted in a better functional annotation for interpretation

of the full Affymetrix results plus a new model for platform benchmarking and integration.

Table 5.2 Existing data points for the two microarray platforms.

Day 21 | Day 28 | Day 42
Long Days | 3 Affy - 3 Affy
3 MD 3 MD
Short Days | 3 Affy | 3 Affy | 3 Affy
3MD |3MD | 3MD

Selecting Perturbed Probes

We selected perturbed probes on each platform by comparing their Coeflicients of Varia-
tion (CV) to that of the respective platforms’ selected controls. We selected 32,024 (12.2%)

Affymetrix probes and 11,287 (10.0%) Nimblegen MD probes (Figure C.2).

Linked Probes

Two linked probes are expected to similar expression patterns under the same treatments
based on their positions in the genome. We link probes across platforms when they share the
same exon. We can model and visualize the these links with a graphical network where nodes
are probes and edges link linked probes (Figure C.3).

We examined Affymetrix-MD linked probes where both the unspliced 60-bp MD and 25-bp
Affymetrix probes share an exon in the gene models. True linked probes should be correlated

and were selected using empirical FDR-corrected p-values from 10,000 random linked probes’
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correlation values. For 8,962 (46.6%) of the linked probes, we reject the null hypothesis that
the Affymetrix probe is misaligned to the genome where either Affymetrix or MD is perturbed

at the 95% confidence level (Figure C.4).

Normalizing for Integration

In order to integrate expression values from different platforms, we must eliminate any
platform effect while maintaining the treatment effects. We mean-centered and mean-scaled
all probes using Level Scaling (van den Berg et al., 2006) (Equation 5.1). We then fit both
a ”full” linear model with a platform effect (Equation 5.2) and a "reduced” model without a
platform effect (Equation 5.3). We tested how much the fit improved under the full model.

Level Scaling removed the platform effect completely (Figure C.5).

X; — Zje-.
T icdpr = —zcdp; ] s (5 . 1)
ice-
jicdpr = Wi+ Tic+ Qiq + /Bip + €icdpr (52)
iicdpr = Wi+ g+ /Bz'p + €icdpr (53)
i = 1...2024 ("true” linked probes)
¢ = 1...2 (platforms)

d = 1...3 (days)
p = 1...2 (photoperiods)

r = 1...3 (replicates)

Integration using a Swappable Gene Prediction model

With continued development of new gene expression detection platforms, quantifying ex-
pression with respect to gene models is non-trivial. From older platforms such as ¢cDNA
microarrays to short-read-based probe chips to transcriptome sequencing, different platforms
measure different units in an attempt to measure the same thing: gene expression. When we

have a reference genome we can place measured probes or reads on specific genome positions,
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but there are often multiple solutions. Further complication comes from incorporating exper-
imentally supported and predicted gene models. This systems approach to gene expression
quantification can be modeled with four variable, or swappable, levels of information: 1) a
genome, 2) base-specific expression levels, 3) gene model predictions, and 4) functional anno-
tation (Figure 5.7). For each combination of the four levels, expression data from different
platforms are integrated into meta-probes and quantified with respect to different gene models
and compared for biological interpretation including alternatively spliced genes. We would like
to be able to swap gene models and transcriptomics platforms in and out of our interpretation
system. The problem is that different gene models will align with probes differently, causing

misinterpretation of gene splicing and expression, or missing it altogether.

Prediction+Annotation (variable)

. Probes (static)

Assembly (static)

Figure 5.7 We would like to be able to mix and match expression platforms and gene models.
If we assume the genome assembly and microarray probe alignments to positions
on that assembly are relatively static (do not change more often then every few
years), we seek the ability to interpret expression quantification from the probes
in the context of any gene model prediction and its accompanying functional
annotation.

Probe-Exon Systems. A Probe-Exon System is a small network of exons linked by
probes which overlap them. In a probe-exon system network, exons are nodes and probes are
edges linking the nodes (Figure C.6).

For a given probe-exon system, if we assume that the observed fluorescence of a probe
equals the weighted sum of the exons which it overlaps, we can often fit a linear model to

the data using Multivariate Multiple Regression and Least Squares optimization (Equations

www.manharaa.com




85

m = 1...Mtreatments
n = 1...Nprobes in system
w = 1...Wexons in system
Xnm = the RMA-normalized fluorescence of probe n under treatment m
(0) Xnm - Xn .
Yom = —5% (Level-scaling (van den Berg et al., 2006)) (5.4)
n-
med(Ypm,
Ynerym = (om) (5.5)

coverage of P on w

where T is all unspliced probes, w is the exon of probe n,

and P is the set of all unspliced probes on &

coverage of probe n on exon w
Ipw = (5.6)
total coverage of probe n

Ynenr = [Zlnew Blwxa + l€lnxm (5.7)

~

Blwey = (Z22)712'v (5.8)

Single-Platform Analysis of the Full Photoperiod-induced Bud Dormancy Data
Data Normalization

The Robust Multi-array analysis (RMA) (Irizarry et al., 2003a) algorithm is used for back-
ground correction and normalization, and median polish (Irizarry et al., 2003b) for probeset
summarization. After RMA, the data is structured as a 167 x 16436 array of log-transformed
probe abundance data, where 167 is the number of hybridizations and 16436 is the number of
probes (with controls removed).

To satisfy a full factorial, model-based analysis, the missing hybridization was imputed by
calculating the mean of the existing two replicates for each gene and treatment combination.
Specifically, each probeset has only two hybridizations from Seyval under the 15-hour (longer
days) treatment at day one. The third imputed replicate value for each probeset was added
for each probeset after RMA normalization and summarization.

For our purposes, a non-zero year effect (calculated using Equation 5.9) is not biologically
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interesting, but prohibits pooling of replicates from each year; Visual inspection of the his-
tograms in Figure C.7 reveals that all gene-treatment combinations exhibit a consistent year
effect. There is a slight leftward skew that may be explained if each distribution is actually
the sum of two distributions; a major population of genes with a non-zero year effect centered
below zero, and a minor population of genes with year effect centered at zero. In order to pool

replicates across years, we adjusted all values from year 2 according to Equation 5.10.

Yigpd = Tigpdl. — Tigpda. Where y;gnq is the year effect for the ith probe- (5.9)
set of the ¢* genotype under the p'* pho-
toperiod treatment measured at the d"day,
and T;gpdyr is the RMA normalized fluores-

h probeset of the g'"

cence value for the it
genotype under the pt" photoperiod treatment
measured at the d**day in the y** year and the

rt replicate.

(cor)

xigpd2r

= Tigpdor + Yigpd Where yigpa and Zigpayr follow Equation 5.9 (5.10)

cor
and x; )

igpd2r 18 the year-effect-corrected ;gpay,

Data filtering

In microarray data analysis, scientists traditionally apply two initial filtering strategies:
filtering by low absolute value and filtering by low variance. Typically, both filters involve some
arbitrary cutoff (e.g., bottom 20 percent of genes) to determine which genes will be excluded
from further analysis. Removing genes with low absolute value is motivated by inaccuracies in
microarray experiment measurements for probes with intensities near zero. Removing genes
with low variance across experimental conditions will eliminate genes from the data that are
not likely to be involved in biological processes related to the organism response of interest.
These are considered ”uninteresting” genes given the motivation of the study (van Iterson

et al., 2010).
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For our microarray data, instead of employing these filters, we propose using the control
probe data for filtering genes. Our method begins by examining the variation that exists
in control probes. The control probes on the microarray platform consist of positive controls,
corresponding to genes that are always ”"on”, and negative controls, corresponding to sequences
that do not exist in these species and are therefore always ”off”. Because of the consistent
behavior of the controls, it is possible to inspect the variance across our experimental conditions
and interpret this as experimental error or microarray platform noise. Now, considering every
gene on the chip, if its variance is similar to the technical noise, we are unable to attribute
behavior to any treatment and the gene should be eliminated from further analysis.

The Affymetrix Vitis gene chip contains 166 control probesets including both negative
controls which are known not to match any Vitis genes as well as positive controls which
are known to be relatively constantly expressed in all or most Vitis plant cells. The negative
controls are based on a Bacterial Artificial Chromosome (BAC). The positive controls are based
on highly conserved actin genes which are expressed similarly for all cells. Visual inspection
of boxplots in Figure C.8 for expression of control probes allows for identification of negative
and positive controls based on their mean expression values. The positive control group was
used as a model for the error variance due to the microarray platform. This subset was chosen
because the variability of the positive controls was larger than the variability of the negative
controls; a difference that may be a consequence of increased measurement error for larger
probe intensities. Because we are interested in genes that are expressed under at least one
experimental condition, it is most appropriate to use the larger variability of the positive
controls as a criterion for filtering.

Inspecting multivariate normality for 16436 distributions is far from trivial. However, using
the positive controls, we can inspect the multivariate normality of technical noise for expressed
genes. To do this, we first applied a data reorganization of the positive controls. Initially,
each of the 20 positive controls were measured 167 times, plus 1 imputed measurement. We
rearranged the data matrix of positive controls to a (20%6 = 120) x (168/6 = 28) matrix where

each row is a single replicate.
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The Quantile-Quantile plot in Figure C.9 of statistical distances from each of the 120
positive controls to their 28-dimensional mean against theoretical x? quantiles shows relatively
good fit, except for some outliers in the tails. We conclude that the technical noise for expressed
genes follows something near a multivariate normal distribution. We can also safely conclude
that technical noise in any subset of the measurements on a gene follow multivariate normal
distributions, and technical noise on each measurement on a gene follow univariate normal
distributions.

Next, we calculated the sample variance, S?, for each of the 120 positive control replicates
by Equation 5.11 and used the resulting distribution of sample variances as a reference for
discriminating variable non-control probesets. We applied the same data reorganization to
all non-control probesets in order to compare their variances across treatments to that of the
positive controls. Each non-control probeset has six replicates under all treatments, but we
wish to calculate a single representative variance for each probeset. To do this, we calculated

the mean variance of all six replicates for each probeset using Equation 5.12.

1
2 2
Scont'rolir = n—1 Z [(:L'igpdT - xlT‘) ] (511)
9:p,d
n = 28 (the sample size)
S, CQOntroliT = the sample variance for the i*" control probeset in the 7y, replicate
Tigpar = the RMA normalized fluorescence value for the ith control probeset

of the g* genotype under the p** photoperiod treatment measured
at the d*"day for the r** replicate.

2 = 235 Y (@ — 7)) (5:12)

-1
" g:pd
= the mean sample variance for all R = 6 replicates of the i*" test

probeset
VR 1
Sgontrolir( ) = n—1 Z [(l‘ilpdr - flf@'lur)Q] (513)
p,d
VR 1 1
Siz( ) = = > {n 7 > [(@itpar — xﬂ..r)z” (5.14)
T p7d

Asprincipalscomponents analysis at this stage (not shown) revealed sufficient separation
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between genotypes, but other effects were not easily identified in the first few directions of
variability. This is probably because applying both Equations 5.11 and 5.12 across both geno-
types resulted in an over-representation of probesets whose targets exist in one genotype and
not the other and do not necessarily respond to the other treatments. Many of these probesets
(data not shown) exhibit large variances, but only due to the genotype factor, which is not of
biological interest here. To avoid these genotype-specific probesets, our filtering used adjusted
versions of Equations 5.11 and 5.12 where a stronger filter was applied to the data: instead
of filtering based on variance across all experimental conditions, we filtered genes based on
variance across only the treatments to V. riparia. This modification to the filter reduces the
effect of genotype and eliminates genes that did not vary across the photoperiod treatments
within V. riparia. By using Equations 5.13 and 5.14 for the controls and non-controls, re-
spectively, we selected only probesets with high expression variance as V. riparia specifically
entered endodormancy.

A plot of the number of genes versus their quantile relative to the positive control variance
data revealed intuitive trends in the data. As shown in Figure C.10, most of the genes exhibited
very little variability across experimental conditions and could quickly be eliminated from

5th

analysis. For our purposes, we have selected all genes above the 75"" percentile in this figure.

This corresponds to 1304 genes, or approximately the top 7.9 % of the original set of genes.

Multivariate analysis of variance

In an effort to mine biologically meaningful genes out of the full set, we conducted a series
of Multivariate Analyses of Variance (MANOVA) on each of the 1304 filtered probesets. An
interaction effect between genotype and photoperiod is biologically relevant because we are
searching for genes perturbed by the short photoperiod due to dormancy processes and not
photosynthetic processes. To test this, we applied a 2-way MANOVA to each probeset with
the multivariate linear model in Equation 5.15. Notice that a separate model is fit to each
probeset, which is represented by a 24 treatments x 7 time points matrix of observations.

The model assumes multivariate normality, which can safely assume for chip effects, but not
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necessarily other effects. It also assumes homogeneous variance-covariance matrices between
each treatment group. We neglected to formally test for these features for any probesets and

assume they are true.

FEach gene is a 24 x 7 matrix

figp?" = [+ 7_-:59 + gz’p + '7igp + gigpr
i = 1...1304 (probesets)
g = 1...2 (genotypes)
p = 1...2 (photoperiods)
r = 1...6 (replicates)
0 = Zﬁgzzﬂipzz:y‘igpzziigp
g 2 g P
Eigpr ~ 11dN,(0, ) (5.15)

We used Wilk’s Lambda, a common MANOVA test statistic, calculated with Equation
5.16, to compare the sums of squares and cross products for the interaction (SSP;y:) and
residual error (SSP,es). We compared its Bartlett-scaled test statistic to a x? distribution
with (2—1)(2—1)7 = 7 degrees of freedom. Unfortunately, this method was unable to further
discriminate genes; a significant interaction effect (i4, in Equation 5.15) was not found for

any gene. This may be due to the small number of replicates (6).

B |SSPye|
B |SSP1nt +SSP’)"€S|’

We altered our approach to mining dormancy-related genes from the 1304 high-variance-in-

A

A — 0 = strong interaction effect (5.16)

V. riparia genes by applying a One-way MANOVA (Equation 5.17) to each gene, but for the
two genotypes separately. This would result in two test statistics for each gene which could be
compared with the goal of selecting those with a more significant test statistic in V. riparia.
The new test statistic, Delta (A), compares the time-multivariate photoperiod effect, which is

measured using Equation 5.18, for Seyval and V. riparia by taking the log-ratio of one to the

www.manharaa.com




91

Each gene is a 12 x 7 matrix
fit twice (once for each genotype)
figpr

1

A SSPyes|
1SS Pyhot + SSPyes|’

i+ Bip + Eigpr
1...1304 (probesets)
1...2 (genotypes)
1...2 (photoperiods)
1...6 (replicates)

0

iid N, (0, 33)

A — 0 = strong photoperiod effect

A
A=1In ﬁ, A |= stronger photoperiod effect in V. riparia

Asv

(5.17)

(5.18)

(5.19)

Like the variance filtering, we compared Delta for each gene to the distribution of Deltas

from all 166 controls. We were able to use all controls because expression value location and

scale do not affect the Delta statistic, and Delta is calculated for each probeset independently.

While we neglect to attempt to show it analytically, Delta for our controls clearly follows a

Normal distribution, when checking the Q-Q Normal plot in Figure 5.8. We also see non-

centrality in the histogram of control Deltas. There seems to be some factor causing generally

stronger photoperiod effects in Seyval. Since we are examining controls, there should only be

a technical (not biological) explanation for this. There may be some feature of Seyval that

causes its RNA to amplify and hybridize more variably than V. riparia and is not corrected

by our normalization technique. We estimated the Delta sampling distribution’s parameters

sample variance of the controls Delta sample, respectively.
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Control Deltas
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Figure 5.8 We used the sample of controls to estimate the parameters of the A sampling dis-
tribution. For each of these controls, the A statistic was calculated using Equation
5.19. The histogram of A statistics for all controls is on the left and the Normal
Quantile-Quantile plot is on the right. The sampling distribution of A very closely
resembles a Normal distribution with mean 0.9 and variance 0.93. We used this
distribution to test significance (in the lower tail) of the experimental A statistics.

For genes with Delta values in the lower tail of the Normal distribution with parameters
estimated by the controls, we can reject the null hypothesis that their photoperiod effect is
similar in both genotypes. We calculated p-values for the 1304 genes, shown in a histogram in
Figure 5.9. False Discovery Rate was corrected into g-values according to (Storey, 2003). Both
distributions appear very appropriate for mining genes for perturbations; the distribution of
p-values is generally uniform, except for a tall mode near zero, made up of the sizeable set
of genes perturbed by the treatments ((Fodor et al., 2007)). There is also a smaller upper
mode, indicating a second set of genes which were perturbed by short photoperiod more in
Seyval than in V. riparia. 770 Vitis probesets’ Delta values fall below the fifth percentile of

the sampling distribution. These are the genes perturbed by short photoperiod more in V.
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riparia than in Seyval, which, after our filtering and multivariate testing, we can assume are
at least mostly dormancy-related genes. Figure 5.4 plots five of the 770 gene profiles, showing

that we have detected genes perturbed by photoperiod in V. riparia.

Histogram of pvalues Histogram of qvalues
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Figure 5.9 Both p-values and FDR-corrected g-values form good histograms, where many
probesets are of the null hypothesis (not dormancy-related), but many form a spike
near zero, represented the set of dormancy-related probesets. The small spikes on
the upper tails represent probesets measuring genes which are actually perturbed
by photoperiod more in Seyval than V. riparia. We analyze the lower-tail genes
in this work.

K-means clustering

We performed K-means clustering using the median expression value of V. riparia samples
given a short photoperiod treatment for each time point per gene. The use of medians for all
replicates was to prevent outliers from strongly influencing the expression summary for each
gene. This results in a 7 x 770 data matrix where the number of rows corresponds to the
number of time points (days 1, 3, 7, 14, 21, 28, and 42) and the number of columns is the

number of previously identified dormancy-related genes (Figure 5.5).

www.manaraa.com



94

The goal of clustering genes by their expression over the time series is to identify groups
of genes that exhibit similar behavior in V. riparia with a short photoperiod treatment. Bio-
logically, genes that are highly correlated with each other are often involved similar functions.
They may also be subject to the same regulatory processes or co-transcribed.

K-means clustering uses an iterative algorithm to assign objects to k clusters such that
the distances from objects within a cluster to its center is minimized. Both k, the number of
clusters, and the distance metric are user-specified. Correlation was the distance metric used
for our clustering because it captures the relation between genes that is most interesting for
our study. The choice of k = 8 was motivated by hierarchical clustering and silhouette plots

not shown.

Functional Analysis of the 8 Clusters

Biologically, it is of interest to explore functional and regulatory relations that exist within
groups of genes that are highly correlated. We used Gene Ontology (GO) (Ashburner et al.,
2000) annotations to investigate individual clusters and also search for overall biological sig-
nificance of the 770 dormancy-related genes.

Gene Ontology is a collection of controlled biological terms used to define gene products
properties. GO is comprised of three separate ontologies; Cellular Component, Biological Pro-
cess, and Molecular Function. Each forms its own network of terms to describe characteristics
of genes. Each ontology is constructed such that terms are nodes and they are linked by edges
that describe defined relationships (e.g., ”sigma factor activity” is a ”transcription initiation
activity”). The full collection of terms and links within an ontology forms a directed acyclic
graph. Each gene in the 770 data set was mapped to a GO identification number that corre-
sponds to GO annotation. Probesets were first mapped to the newest version of the Grapevine
genome produced by the French-Ttalian Grape consortium (Delledonne, 2009). Probeset con-
sensus sequences were aligned using BLAT (Kent, 2002) to all chromosomes in the genome
assembly. Then, probesets were mapped to predicted gene models by identifying probesets

and gene models which overlap by at least four bases. False hits from our technical correlation
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comparison were removed. Individual probes were then mapped to their respective positions
on the genome, according to their positions in the probeset consensus sequences. A compu-
tational annotation effort at the University of Padova (unpublished) has produced (among
others) GO annotation for the gene models, which were then attached to the genes’ respective
overlapping probesets. The mapping is not 1:1, and in many cases, many genes will have the
same annotation. In addition, approximately half of the 770 genes are not currently annotated
and cannot be included in the following data enrichment process.

In order to identify commonalities within clusters, we used a hypergeometric test to identify
any annotations that are overrepresented within each group. Benjamini and Hochberg False
Discovery Rate (FDR) correction was used to correct for multiple comparisons. Our criteria
for overrepresented categories was a test for the cluster versus the entire annotated network
for our organism. To say an annotation is overrepresented in a cluster is to reject the null
hypothesis that the ratio of genes in the cluster with that specific annotation to the size of the
annotated cluster is less than or equal to the ratio of all genes annotated with that specific
annotation to all annotated genes (an odds ratio). Because of potential bias in annotation for
each of the three ontologies, we chose to perform an individual test of significance per ontology
at the 90% confidence level. All tests were executed in Cytoscape (Shannon et al., 2003) using
the BINGO plugin (Maere et al., 2005).

We also used our PathwayFlow web tool to discriminate VitiCyc pathways linked to the
genes in each cluster by entering the members of each cluster as a query list. VitiCyc lacks gene
regulatory relationships so we can only mine forward-direction query list successors. Members
of each cluster were also compared to a set of reference transcription factors from PlantTFDB
(Guo et al., 2008) made up of transcription factors from Vitis vinifera, Populus trichocarpa,

Glycine mazx, Oryza sativa, and Arabidopsis thaliana (Figure 5.6).
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APPENDIX A. GRAPEVINE DNA SEQUENCING PROJECTS

John L. Van Hemert !, Jerome Grimplet 2, Marianna Fasoli 3, Alberto Ferrarini®, Massimo

Delledonne?, and Mario Pezzotti®, and Julie A. Dickerson®

On the transfer of functional annotation from one grapevine genome

assembly to another

During my work on Vitis related projects, multiple assemblies and gene model predictions
were created for the Grapevine. A major challenge was how to handle these different versions

of important information and the different analyses based on them.

Abstract

In 2007 a draft assembly and gene prediction of the grapevine was made public for the
scientific community. Since then, a new assembly which added more Sanger Sequencing reads to
the assembly pool produced a new genome version with superior base coverage. Before the new
version was created, much functional annotation was performed on the previous genome. In
order to most efficiently annotate the new version, it is important to leverage as much completed
work as possible by transferring ”8X” annotation to the ”12X” version of the genome. The
8X and 12X assemblies+predictions of the grapevine genome were compared to answer the
question, ”Can we uniquely map 8X predicted genes to 12X predicted genes?” Predicted genes
were compared between the two genome versions. Results show that while the assemblies and

gene structure predictions are too different to make a complete mapping between the two,
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interesting structures appear which enlighten our understanding of the transition from one
genome version to the next.
Definitions

1. 8X: The grape genome published in 2007 by the French-Italian Consortium with average

8.4X assembly coverage (Jaillon et al., 2007).

2. 12X: The yet unpublished genome by the same group with increased coverage to 12X

average (Delledonne, 2009).

3. Gene prediction: the computational prediction of ORFs, genes, UTRs, and CDS for a

genome sequence.

4. Genome annotation: A mapping between predicted genes on a genome and functions,

locations, processes, mutants, homologs, etc.

5. Chip annotation: A mapping between microarray probesets and functions, locations,

processes, mutants, homologs, etc.

6. 7V0”: The assembly and gene prediction of the 12X genome by Genoscope. This will be

included with the initial 12X paper/publication.

7. ”V1”: The improved assembly and gene prediction of the 12X genome by the Padova
group. This will be released immediately after the ”V0” publication. This is also the

prediction the Nimblegen chips are based on.

8. 7Sister genes”: Two versions of the same gene from different assemblies. Not to be

confused with paralogs, which are homologous sequences from the same assembly.

9. 7 Alignment series”: A group of local sequence alignments which appear to line up on a

diagonal line when plotted on their respective chromosomes’ positions.
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Methods

Megablast Megablast is an multiple sequence alignment tool designed for comparing
nucleotide sequences which differ due to sequencing errors. It operates similarly to BLAST,
but does not allow for affine gap penalties which attempt to model sequence indels in evolution
(Altschul et al., 1990; Zhang et al., 2000). Megablast was used to compare 8X and 12X
sequences where 8X sequences were the query set and 12X sequences were the subject database.
For the 12X prediction, ”V1” was used, which is the latest version of gene model predictions on
the 12X assembly. Default Megablast parameters were used because results would be further

filtered in a later step.

Entire predicted genes were compared The 8X and 12X assemblies are accompa-
nied by respective gene structure predictions, which contain different types of subsequence
predictions. These include genes, mRNAs, UTRs, introns, exons, and inter-genic spaces. Be-
sides comparing the full chromosome assemblies, any set of one or more of these subsequence
types could be used for comparison. Per the predictions, genes contain mRNAs, which contain
UTRs, introns, and exons. Since open reading frame can be generally defined as a region of the
genome which is potentially protein-coding, we can called these predicted gene regions ORFs.
In this study, because we are detecting sequencing variation and not evolution, these complete

ORFs were compared between the 8X and 12X assemblies 4+ predictions.

Chromosomes were aligned FEach assembly produced 19 ordered chromosomes plus a
twentieth unknown chromosome which contains contigs which could not be assigned to any
of the 19 chromosomes. Of these 20 chromosomes, many are accompanied by smaller part-
ner chromosome labeled as random. These random chromosomes contain contigs which were
assigned to the respective chromosomes, but could not be assembled in order with the other
contigs. Expectedly, the 12X assembly contains smaller unknown and random chromosomes.
Gene structure predictions were performed by Genoscope and the Padova group on all (or-
dered, random and unknown) chromosomes, producing ORF's to compare in all chromosomes.

However, some. analyses, such as those considering position information, must omit the random
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and unknown chromosomes.

Sequence homology presents a Cardinality Problem Megablast results in a many-
to-many relationship between 8X and 12X ORFs. Hypothetically, the 8X prediction could
define a long gene on a specific locus, while slightly different assembly in 12X version could
cause a prediction of several separate genes spanning the same nucleotides. This results in
many 12X predicted genes aligning almost perfectly with the same 8X gene. Of course, the
reverse is also possible. Further, paralogous domains cause a confounding web of links between
sets of genes. The degree to which a gene is linked to multiple sister genes in the other version
is called cardinality. When we model the sister gene hits as a graph, where nodes are genes
and edges represent Megablast hits, we create a bipartite graph where one side is the set of 8X
sequences and the other side is the set of 12X sequences. Edges between the two sets indicate

sequence homology hits (Figure A.1).

Hits were ranked and bests were selected The cardinality problem can be ap-
proached by ranking hits for each gene and selecting the best hit out of many for a gene
with cardinality greater than one. This approach assumes that this best hit on a gene is the
only real match and should be assigned as the one and only sister gene. Ranking and selecting
best hits must be done ”in both directions.” That is, to assign the best hit for each gene in
one assembly version and then assigning the best hit for each gene of the other assembly out of
the remaining links. The resulting unique one-to-one mapping depends on which ”direction” is
ranked and selected first. For this study, the 8X genes were first ranked and selected because
this resulted in a larger number of unique one-to-one sister gene mappings. A measure of the

alignment coverage was used to rank and select mappings.

Alignment coverage was used for scoring It is assumed that a good pair of sister
genes will produce a local alignment which spans most of both gene sequences. When searching
for these cases, we can define a function of the megablast alignment results which reflects

alignment coverage. The function used for this study is simply a percentage comparing the
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Figure A.1 Cross-assembly mapping is a bipartite graph problem; if gene

models from one assembly on the left side are mapped to gene
models from the other assembly on the right side, we are bound
to find one-to-many and even many-to-many relationships.

length of the alignment region to the sum o the lengths of the respective hit ORFs. Indeed,
this reflects the same measure as the normalized bit score on which BLAST’s expect value
is based, but the alignment coverage score is more intuitive here. Results are similar if not

identical to using the bit score.

Results

Score distribution shows much noise When naively selecting best hits in both di-
rections, we have a set of 21461 unique one-to-one mappings between sister genes on any
chromosome (ordered, random, and unknown). Of these, 5182 pairs involve a random chromo-

some and 4109 involve an ”Unknown” chromosome. While these are the hits which had the
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best alignment coverage for each respective gene, the alignment coverage values are far from
perfect and reflect many false positives. Of this one-to-one mapping, we can plot a histogram
of the alignment coverage scores.

The histogram is actually the sum of two different distributions. The first is clear in the
left mode. This is a form of the Karlin distribution (Karlin and Altschul, 1990), which is
the distribution of random best sequencing alignment scores from false sister gene pairs. The
rightward mode is from a normal distribution folded at a maximum value of 100% alignment
coverage. This shows the distribution of alignment coverage scores from true sister genes. We
can draw the two separate distributions by eye. If we define a cutoff score around 85, we can
mark the areas which indicate the number of true positives, false positives, true negatives, and
false negatives (TP, FP, TN, FN, respectively). From this, it is clear that, at best, only a few

thousand of the mappings are correct (Figure A.2).

Gene order series are observed in alignments Despite poor structure in the sister
gene mappings based on alignment coverage, we can see interesting structure when considering
the Megalast hits with respect to gene position. A plot of the relative chromosome positions
in each of the 21461 unique sister gene pairs shows much structure. When sister pairs from
the same chromosome are color coded as such, we see many pairs in series along the diagonal.
This shows that sister genes are detected in line with their sisters on the other genome version.
Black points indicate sister gene pairs which come from different chromosomes. Many of these
do show series structure. Most of the black series are mapping from an 8X random or Unknown

chromosome to a 12X ordered one (Figure A.3).

3D plots show that high coverage scores indicate ”good series” We can plot the
sister gene pair positions along with a third dimension to visualize scores in this context. A 3D
view of the 21461 sister gene pairs shows that strong alignment coverages coincide with gene
order series (Figure A.4). On paper, the 3D visualization is difficult to interpret, but using
Ggobi (Swayne and Buja, 2004), the user is free to rotate the plot and see these signals.

Similar 3D plots were created for each of the ordered chromosome (Figure A.4). These

www.manaraa.com



103

Histogram of coverage_scores

Fraguency
400 qoc 1000 1200
|

200
|

I I
qa 20 A7 0 B 100

CLveralgd_snoras

cutoff

Figure A.2 Distribution of Cross-platform MegaBlast hit scores. We see
the sum of two populations: false hits and true hits.

plots do not show unique ranked-and-selected sister gene pairs, but all Megablast hits where
both genes came from the particular chromosome plotted. Since the genes are not ranked and
selected, we clearly see low-scoring noise hits off the series and strong signals from the hits on
the series, which are generally along the diagonal. The shows that we need not manually or
computationally detect the sister gene pair series based using chromosome positions, which is
a non-trivial signal processing task. Rather, we only need to select high alignment coverage
scoring pairs. This partly validates the mass rank-and-select method for creating the unique

one-to-one mapping.

Gene order inversions are observed Some alignment position plots show one or more

sister gene pair series along a negatively sloped diagonal (Figures A.3 and A.4). These series
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Figure A.3 Cross-platform MegaBlast hit positions. The X-coordinate is
the relative position on the 8X chromosome and the Y-coordi-
nate is the relative position on the 12X chromosome. Colors
represent a hit between gene models on the same respective
chromosome. Black points are for hits between gene models on
differnent respective chromosomes.

indicate gene order inversions where a series of 8X genes are aligning with 12X sister genes
in the reverse order. Notice that these series show scores as high as the positively correlation

series.

Gene order inversions are at the assembly level Are these genes reversed in order
at the assembly or prediction level? In order to answer this question, an ad-hoc pipeline for
manual subsection of hits from the position plot in R-Ggobi was created. Using this pipeline,
sister gene pairs were selected from the negatively sloped series from the alignment position
plot for chromosome 12, which contains the most inversions. A Fisher test was conducted to
test the null hypothesis that the ratio of opposite strand hits is the same for two sets of hits: 1)

hits on the inversions and 2) all other hits. The test resulted in an immeasurably small p-value,
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Figure A.4 3D plots of respective relative chromosome hit positions plus a
third axis for alignment score for all hits (left) and for hits be-
tween 8X chromosome 1 and 12X chromosome 1 (right). Most
other ordered chromosomes show a similar pattern.

allowing confident rejection of this hypothesis and to accept the alternative that sister gene
pairs on inversions strongly tend to be opposite strand alignments. This indicates that the
inversions are at the assembly level and were probably caused by inadequate linkage mapping

in the 8X version (assuming the 12X is more correct). (Figure A.5).

Inversions are probably poorly assembled contigs in 8X Large assembly inversions
are probably caused by sequencing errors on the inversion flanks or ends. These errors are
probably caused by low coverage in these regions. A 3D plot where the third dimension is
the assembly coverage for 8X may show that the ends of the inversions have low values while
plotting the 12X assembly coverage may show better values in the same region. A plot where

the third dimesion show the difference between 12X and 8X coverage may show a similar signal.

Drastic changes in Chromosome 15 are observed Returning to the plot of all
ranked-and-selected sister gene pairs, notice that the chromosome 15 series begins midway
through the 12X assembly. In addition, the beginning of chromosome 15 in the 12X assembly

aligns best with a portion of chromosome 6 in the 8X assembly. While simple cis-inversions are
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Figure A.5 The cross-directional inversion alignment odds ratio shows that
inversion hits were opposite-strand alignments while non-inver-
sions were same strand (+) alignments.

minor side-effects of linkage mismapping, trans-inversions show a more severe and less recover-
able inadequacy in the 8X sequence. A similar alignment plot for full chromosome alignments
shows similar structure to the ORF alignment plots (Figure A.6). All 8X chromosomes were
Megablast’ed against all 12X chromosomes using the same procedure as the ORF comparison.
Only hits of length 2 kb or more were used because this reduced the number of hits from over
1.1e8 to less than 300000 as shown in the histogram of all chromosome hit lengths (Figure
A.6). Placing the resulting local alignments on a gbrowse (GMOD, 2010) track, we confirm

the tendency for inversion regions to align on opposite strands (Figure A.7).

Discussion

Visualization is important for comparative genomics Chromosome comparison is a large
scale pattern recognition problem. The best available tool for pattern recognition is often the
human mind. Therefore, visualization techniques are important for chromosome comparisons.
For this study, a the multivariate data visualization tool Ggobi was used in concert with the

sequence visualization tool Gbrowse. In particular, chromosome position plots of alignment
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Figure A.6 Distribution of full chromosome MegaBlast hit scores (A.6(a),
the red virtical line is the right-most value used.) When in-
specting these alignments using the 3D plot, we can see that
the 12X (labeled "new”) chromosome 15 ORFs align well with
8X ORFs from chromosomes 15, 6, random 15, and random
Unknown A.6(b).

hits with a third score dimension conferred easy pattern recognition, while Gbrowse presented
smaller scale examples of the patterns detected.

A possible dynamic programming approach to series detection If there had not been such
a high correspondence between diagonal alignment series and high alignment coverage scores,
these series might have been computationally detected. One possible method for this is a mod-
ified Smith-Waterman dynamic programming approach. Instead of tracing a path through a
matrix of base pair alignments between two different sequences optimizing an overall align-
ment score, we would trace a path through a matrix of Megablast hits between two different
chromosomes optimizing an overall position correlation. The caveat is that the alignment score
can be calculated incrementally at the margin, adding base matches or gap one by one, and
hit position correlation must be re-calculated for each increment for all previously included
hits in the path trace, leading to a sort of inner dynamic programming problem. Future work

may entail implementing such an algorithm and testing is accuracy in marking the series of
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Figure A.7 We can see that full chromosome hits are opposite strand within
an inversion (top) and positive strand outside of inversions

(bottom).

alignment hits on the diagonals (or inversions).

Conclusion Creating a unique mapping between predicted 8X genes and 12X genes re-
quires consistent gene predictions between the two genome assembly versions. Apparently, the
12X assembly yielded such different sequences and gene predictions that most sister gene pairs
detected by the rank-and-select approach are random noise. Only a few thousand pairs are
clearly correct matches. These sister gene mappings can transfer previously curated 8X gene
functional annotation to a minority of the 12X genes. Due to severe differences between the
assemblies caused by low-coverage and linkage mismapping, the remaining 12X sequences must

be functionally annotated ”de novo” using the same pipelines used to annotate the 8X genes.

Processing DNA re-sequencing data

compared to Pinot Nior genome after Illumina resequencing.

The purpose of this project was to investigate putative indel regions in Corvina genome
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Background

A highly homozygous Pinot Noir was sequenced using Sanger technology for average read
coverage of 12X. A heterzygous Corvina cultivar was sequenced using Illumina technology and
the reads aligned to the 12X Pinot Noir reference genome. Read coverage for the Corvina (CV)
reads was compared to read coverage for the Pinot Noir (PN) reads. Coverage was generally
equal, but some areas showed much high coverage for CV than PN and others showed little or no
coverage for CV. The former are interpreted as possible PN regions that are duplicated in CV.
The latter are interpreted as possible deletions from PN to CV, also stated as genomic regions
that exist in PN but not CV. Regions were classified as CV Duplications, CV Deletions, or
Equal (insignificant read coverage difference). According to the data file defining these regions,

there are 747 CV Deletion regions and 156 CV Duplication regions.

Data was visualized using Gbrowse tracks

Four gbrowse tracks were created. The first track plots the read coverage difference values
and colors positive (more CV coverage than PN) values green and negative (less CV coverage
than PN) red. A second and third track show the regions where the read coverage difference is
far enough from zero to be significant in either direction and colored similarly to the plot. A
fourth track defines ”Unknown” regions that were nearly but not significantly different from

zero coverage difference.

Deletions refuted by Nimblegen chip data

To check the above putative deletion regions, genes which overlap the deletion regions were
checked in a current expression atlas study for CV done on the Nimblegen microarray designed
based on predicted gene models from the 12X PN genome assembly. The study currently has
20 organ x developmental stage combinations with three biological replicates each. Data was
discretized to a matrix of 0’s and 1’s where 1 indicates a gene is expressed higher than two
standard deviations above the mean expression of a pool of negative control probes in at least

2 of the 3 replicates. 0 indicates otherwise. If a gene is part of a true deletion, it should not be
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expressed in any of the 20 organ-stages. Surprisingly, the distribution of ” on-conditions” for the
putative CV-deleted genes shows that most are actually detected on the microarray (Figure
A.8). Onuly 270 of these putative CV-deleted genes were never detected by the microarray
analysis. GBrowse tracks were used to visualize the relationship between the putative Corvina
deletions and detected genes in the Fasili et al atlas study (Figure A.9). When plotting these
tracks on gbrowse along with the track mentioned above, one can easily see which putative CV
deletions are supported or refuted. Interestingly chromosome 1 contains many putative CV

deletions and there are no overlapping genes to support or refute them.

Deletion Genes in Altas Data

450

350

250

Number of Genes

0 I

9 10 1 12 13 14 1% 16 17 18 19 20

Number of organ-stages On

Figure A.8 Corvina genes detected in Fasoli et al atlas.

Functional annotation of the CV Indels

s Fasta sequence file were generated by extracting the PN genome regions defined by the
putative CV duplications and deletions respectively. Since there are 156 CV duplication re-
gions, there are 156 sequences in the duplication fasta file. For the deletions regions, only

regionspweresextractedswhich do no overlap a gene detected in the atlas study. This reduced
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the 747 putative deletion regions to 208 regions. These 208 regions were extracted from the
PN 12X genome and placed in a fasta sequence file. Each of these DNA sequence files were
compared to the REFSEQ database of plant proteins using blastx. As a first look at the re-
sults, a list was prepared for each class (deletions and duplications) of blastx hits which meet

the following criteria:

1. expect value < le — 20

2. not of Vitis

3. not a "hypothetical protein”
4. not a "predicted protein”

5. not an ”ORF”

6. not a Rice locus

Criteria 2-6 remove REFSEQ hits whose names are not meaningful. Many hits were re-
moved this way, but 2048 remain for CV duplication regions and 1237 remain for CV deletion
regions. These lists are too long to present here, but we can conduct a functional analysis using
these lists with our PathwayFlow web tool (Figure A.10). Using our tool, we find that those
genes both missing from and duplicated in Corvina grapes are involved in several pathways

known to produce the differences between wines, such as sugars and anthocyanins metabolism

(Table C).
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Figure A.9 GBrowse tracks for Corvina indels. The first defines the genes
which overlap putative CV deletions and were not expressed in
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tected in at least one organ-stage. These genes are evidence of
falsely predicted CV deletions. (Top: Chromosome 1, Bottom:
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APPENDIX B. ANNOTATION DATABASES FOR VITIS

During my work on Vitis related projects, necessity dictated central organization of new

annotation efforts by the community.

VitisMart: An Annotation BioMart for Vitis

Grapevine genetics has made large advances recently. After a draft assembly with 8X aver-
age coverage of the Pinot Noir genome was release and published in 2007 (Jaillon et al., 2007),
a second draft was developed by the same French-Italian consortium that has average coverage
of 12 Sanger reads and computationally predicted gene models on each of the chromosomes.
These initial gene models were called ”V0.” A subsequent set of gene models was predicted
based not only on sequence, but also on RNAseq data from a simple berry development ex-
periment (Delledonne, 2009).

In order to create a central, query-able resource for these and other functional annota-
tions, we created a BioMart (Smedley et al., 2009; Haider et al., 2009) database. BioMart
instances are a semi-automatic rearrangement of an existing database schema into an inter-
nal, de-normalized form used for a standard web, webservice, and programming interface.
Biomarts have a heirarchical organization where Databases contain Datasets and Datasets
contain Records, which can be filtered based on search criteria to provide lists of matching
Records’ attributes. We created a simple BioMart containing a single Database, which con-
tains a single Dataset, which contains Records of 12X V1 gene model functional annotation
from different sources including a mapping from VitisNet (Grimplet et al., 2009) 8X-based an-
notation to 12X V1 genes by Jerome Grimplet and the following annotations based on Giorgio

Valle’s lab’s annotation pipline on 12X V1 gene models:
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1. Gene Ontology terms

2. RefSeq (plants) proteins
3. Pfam domains

4. Prosite domains

5. UNIPROT proteins

A use case for mapping 8X genes to 12X V1 genes is presented in Figure B.1. The results
of BioMart query link to corresponding genes on our GBrowse server, which houses all tracks

used for this and other projects (Figure B.2).

VitiCyc: A Pathway Genome Database for Vitis

While the Plant Metabolomics Network (Lysenko et al., 2009) hosts a BioCyc database
for Vitis, it is not comprehensive and lacks the 12X V1 genomic data that remained private
and unpublished during this work. We created a Pathway Genome Database (PGDB) using
the PathwayTools software (Krummenacker et al., 2005), which takes as input a diverse set of
specially-formatted gene structure and annotation files and outputs a fully integrated PGDB,
which is web-browsable and integrated into all of our tools and information systems. We
used the 12X assembly with the V1 gene structure predictions with the fine-tuned functional
annotation from Giorgio Valle’s laboratory in Padova, Italy plus publicly available annotation
of the Vitis vinifera chloroplast and mitochondrial genomes. The next few figures include
screenshot from a VitiCyc web browsing session displaying general statistics, a section of

chromosome 1, and an example pathway (Figures B.3, B.4, B.5).
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11) Select anything you want here (when in doubt, select all) A e e

Accession name Accession name

12) Click Results again

These links go to my Gbrowse
(use the same
rd

usermname/passwol
you did to get here)

.

i

on brp
ras Just lool rem up at the PFA
PFO0512.18 e

R L S ——

fee——————————— = ] P R 2
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Dataset 101814 /135838 Please restrict your query using criteria below
Entrios = FILTERS

= 12X V1 Gene ID
{GSVINTDOOD0053001, JGYVv332.14)

12X01 Arnolation

Annelalion Assigme
W1 REFSEQ PLANT.
Attributes I
12X V1 Gene I

Accossion ~ Annotation Assigment O SISTER GENES GRIMPLETT ©
Accession name PrAMSCAN

1_FROSITE B Ragion
I_REFSED PLANT

VITISNET Wit

[

it

Accosslon{s) ot 10 . af

B

= Functian{sfNamels)

Cl=a- highl g~ rgy Upcats Imace|

= annolation saurce(s)
bestal =

12X V1 Gene ID Access Accession name

|CWw115.2 ¥ 671341 HNADI | dehydrogenase subunit 7 [Vilis vinifera]

n

BLWW£.111 YP_S67.34.1 HADH denydrogenase supunit 7 [VIds vinifera]

|6Ww333.74 YP 5671341 MADH dahydrogenase subunit 7 [Vitis vinifera]

|GWw11G.2 ¥P 0012947471 | NADH-plastoquinone oxidereductase suburit 7 [Chlerarthus spicatus]
PIVVL 111 YP_UDT 7947471 [ NADH-plasmgquinone oxidoredictase sunerit / [Chlarartnus spiraris)
|GWw332.14 YP 0012847471 | NADH plastoquinone oxidoreductase suburit 7 [Chlorarthus spicatus]
1GVy115.2 NADH danydrogenase supunit 7 [Carlca papayal

PCWwA.111 MADH dehydrogenase subunit 7 [Carica papaya]

[GWw332.14 NADH dzhydrogenase subunit 7 [Carica papaya]

JGVwl1h.2 YP_idlbd 1 MANH-plastoquinone oxidaredictase sunerit / [Platanis occid=ntalis |

Figure B.2 VitisMart is integrated with our GBrowse server.
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|Flep|lcc|n |Tot.u| Genes |Prc|te|n Genes |RNA Genes |Pseudagenes |Slze (bp) |Pathwa\r5: | 372
[chr1 | 1541 | 1541 | of 0 23,037,639 [Enzymatic Reactions: | 2261
|chr2 | 1106 | 1106 | o 0| 18,779,844 [Transport Reactions: | 28
[chr3 | 1249 | 1249 | of 0[ 19,341,862 | [Polypeptides: 29383
|chr4 | 1498 | 1498 | 0| 0| 23,867,706 | |Protein Complexes: | 1
|chra | 1604 | 1604 | 0| 0| 23,021,643| [Enzymes: [ 7694
|chré | 1394 | 1394| of 0| 21,508,407 | [Transporters: | 254
|chr7 | 1505 | 1505 | 0| 0| 21,026,613 Compounds: (848
|chrs | 1627 | 1627 | 0| 0| 22,385,789
[chrs | 1297 | 1297 of 0[ 23,006,712 [Transcription Units: | 0
|chr10 | 949 | 949 | o 0| 18,140,952 [RNAs: [ 7
|chr11 | 1185 | 1185 | of o[ 19,818,926
chr12 | 1440 | 1440 | 0| 0| 22,702,307
lchr13 | 1434 | 1454 | 0| 0| 24,396,255
|chr14 | 1840 | 1840 | 0| 0| 30,270,672
|chr15 | 1142 | 1142 | o 0 20,304,914
lchr16 | 1266 | 1266 | 0| 0| 22,053,297
[chr17 | 1083 | 1085 | 0| 0| 17,126,926
|chrig | 2061 | 2061 | 0 0| 29,360,087
|chr19 | 1345 | 1345 | 0| 0| 24,021,853
|chrun | 2628 | 2628 | 0| 0| 43,220,988
|chloroplast | 137 | 84| 53 | o[ 160,928
|mitochondrion | 108 | 74| 34| 0| 773,279
[Total: | 29461 | 29374 | 87| 0 [470,327,599

Figure B.3 VitisCyc summary statistics.
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Home | Search ‘ Tools | Help ‘
Vitis vinifera chr1: 1 - 1,729 686
LS L L L B Ly L L ) L B L
2,000,000 4,000,000 £,000,000 5,000,000 10,000,000 12,000,000 14 000,000 16,000,000 18,000,000 20,000,000 22,000,000
Zoom g Out —
serome [ - B start (bop): 1 End (bp): [1729686 [ 6o | Gene name: [ Show Tracks | &
Gene color indicates operon membership.

A
Left <'b P Fiight Legend: [ Froteingene  * Transcription Start
7 RN gene #  Terminater Ieuse over genes and operons for mere information.
To center gene in display, click on tick mark under it.

sites El Zoom ; In
JBUT1ES

Jourrses
[ JGw T BT [ { P N 14 [ JGW 1 B20
L B B LB L o L S e
20,000 40,000 i 50,000 100, G"“ e o el Lo 00 160,000 200,000 220,000 240,000
e 93,202 <- 107,691 Huses
el (bp): 1GVv11.624< +31761 WH—> [ <] I
\|\I\I‘I\I\|\I\I‘I\\\\\I\I‘I\I\|\I\I‘II\I\I\I\|\I\]GVV11'523+1593’JGVU11'522 LI L L L B
260,000 280,000 300,000 320,000 340,000 360,000 360,000 400,000 420,000 440,000 460,000 480,000
HGui5a2
N LA B o B B B B e B B B L B B L
500,000 520,000 540,000 560,000 580,000 500,000 520,000 840,000 880,000 880,000 700,000 720,000 740,000
e GwiLs3s
S - G RSN 1S -8 - NSNS SO S S 8 N G S S 0 G 52 - 41 -SSR D28
780,000 780,000 500,000 820,000 840,000 80,000 880,000 500,000 920,000 340,000 980,000 980,000
S KGN TS AR NS NG G : 4G S G S-S0 X 1 MR N NG S 21 - S S
1,000,000 1,020,000 1,040,000 1,060,000 1,080,000 1,100,000 1,120,000 1,140,000 1,160,000 1,180,000 1,200,000 1,220,000
e P
1GwT1 435 | > 4 [ JGvT1 485 [ 1GvT1 481
L L B L L L B L B
1,240,000 1,260,000 1,280,000 1,300,000 1,720,000 1,340,000 1,380,000 1,380,000 1,400,000 1,420,000 1,440,000 1,460,000 1,480,000
Isvet1430 It 1475
S - - 5 D A S S N SN 0 -2 GHNN . G N N-2 : JN - G -
1,580,000 1,600,000 1,620,000 1,640,000 1,650,000 1,580,000 1,700,000 1,720,000

1,500,000 1 520 000 1,540,000 1,560,000

Report Errors or Provide Feedback
Page generated by SRI International Pathway Tools version 13.5 on Tue Oct 19, 2010.

Figure B.4 Chromosome 1 in VitiCyec.
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Search

Vitis vinifera Pathway: glycolipid biosynthesis g-l

‘ Show Predicted Enzymes | & ” More Detail | | Less Detail | | Species Comparison

a 1,2-diacylglycerol

UDP-D-galactose monogalactosyldiacylghcerol
syhthase:
JGW 11827
wridine-5'-diphosphate: monogaactosyldiacylglycerol
spnthase: JGWWE B45
24148

a monogalactesyldiacylgycerol

digalactosyldiacylglycerol

synthase JGWdE S
UDP-D-galactose: digalactosyldiacylglyceral

aynthaze JEWIET 24.1.154

a 1,2-diacylglycerol 241154 a fi,f digalactosyldiacylglycerol

diggalartosyldiacylolycerol

wridine-5'-diphosphate synthaze:
JGA105.20 1
241241 . )

af,p digalactoesyldiacylglycerol a 1,2-diacylglycerol

a digalactosyldiacylylycerol

&mpﬂulﬂ: a trigalactosyldiacylglycerol

nam: Synonyms: B-D-galactosyl-(1->6)-B-

If an enzyme e is shown in bold, there is experimental evidence for this enzymatic activity. e 'I_?lf_%)_ = ( T)—li, P
I I, TGDG, 1,2-Diacyl-3-0-(beta-

Locations of Mapped Genes: EIALLERL iacy! (l

D-galactosyl(1->6)-0-beta-D-galactosyl{1->6)-0-
beta-D-galactosyl)-sn-glycerol

e

Synonyms: glycosylglyceride biosynthesis

Superclasses: Biosynthesis -> Fatty Acids and Lipids Biosynthesis

Pathway Summary from MetaCyc:
General Info Phosphoglycerides (phosphelipids) are major membrane lipids found in nature which have phosphate as their hydrophilic heads. In contrast, the plant plastid
(including chloroplast) membrane only has phosphoglycerides as a minor constituent. Instead, glycosylglycerides (glycolipids) are the main membrane lipids, which have
sugars as their hydrophilic heads. There are three important glycosylglycerides: monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerel (DGDG), and
sulfequinovosyldiacylglycerol (S5QDG, see sulfolipid biosynthesis ). Both MGDG and DGDG have galactose as the sugar group and are also known as galactolipids. SQDG has

sulfoquinovose as the sugar group and is thus known as sulfolipid. All these glycosylglycerides are synthesized within the chloroplast using diacylglycerol (DAG) as the
substrate.

In plants, DAG and DAG-derived glycosylglycerides are classified as either prokaryotic or eukaryotic. The prokaryotic pathway uses fatty acids synthesized de novo in
plastids. Because of the substrate specificity of plastid acyltransferases, the DAG pool made from the prokaryotic pathway has 16-carbon fatty acids at the sn-2 position of
glycerol backbone, and 18-carbon at the sn-1 position. The C18/C16 structure is similar to that of cyanobacteria glycerolipids and is called prokaryotic. In the eukaryotic
pathway, fatty acids synthesized in plastids are exported to cytosol, and are used in endoplasmic reticulum for the synthesis of DAG. Because of the substrate specificity of

ER isozyme acyltransferases, the DAG pool is highly enriched with 18-carbon fatty acids at sn-1 and sn-2 positions. The C18/C18 structure is only found in eukaryotic lipids,
and is thus called eukaryotic.

Figure B.5 The glycolipid biosynthesis pathway in VitiCyc.
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APPENDIX C. LARGE TABLES AND FIGURES

Q =

Enter Affy IDs here: Usable matches appear here:

Figure C.1 Enter your IDs in the box on the left to receive the correspond-
ing BioCyc IDs in the box on the right if they exist.
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Table C.1 Icons and buttons on the web tool.

Query List. This represents the Query List.

Response Groups. This represents the Response Groups.

Pathway Network. This represents the selected pathway network.

Query List — Response Groups. This represents flow from the Query List
to the Response Groups.

Ck(- Query List < Response Groups. This represents flow from the Response
Groups to the Query List.

Aerd Query List «+— Response Groups. This represents the sum of flow between
the Query List and Response Groups.

Lookup IDs. This button takes you to the BioCyc IDs of your query list.

Results Files. This button takes you to a directory containing output files
from your analysis.

Hard Link. This button provides a hard link that can be bookmarked and
saved for loading the same analysis at a later time.

G O B

Quality Control. This button takes you to a directory containing Erlang
distribution assessments for a random sample of response groups.

Download PDF. This button downloads a PDF of the three plots along with
a Venn diagram of the significant response groups in each.

o=

Response Groups IDs. This button downloads a list of the significant re-
sponse groups’ BioCyc IDs.

www.manharaa.com




123

‘Aemiyed oyeuoInon(s oY) Jo 3IeJ

9SBIOWIOST 9)RBUOININ[Y)

‘sfemtyyed wsijoqe)ed autresojoe[es[Aje0e-N pue [03130e[eS o1} Jo jred ST UOIPORdI SIY T,

oseop
e oreydsoydsiq-osojese],

‘pojearjor urmooaq Aqaoyjurejord gdyn
-oydsoyd £q pagedroydsoyd st ydyn umejord A1oyensar reuorpdimosurr) oy} UOIORII ST} U

NXH-VdHN

Arewrwuns oN

ostlIodkl aulue[y

‘Aemryed oyeuoinioe[es oy} jo jred

9SB.IWIOST QG@QOMSQU\NM@wlm

‘utejord yreg-oydsoyd o) woiy uorye[Lroyds
-oydsuery Aq pejedioydsoyd st ydw() ujord Arojemnsal reuonyduouer) o) UOIORIIL ST} U]

NXHd-dINOYVd

outurejouryo[Apryeyd
-soyd jo siseyjuAs oy} 10J deis pejruiod oY) St pur juiod yPURI| © JR ST UOIIORAI ST,

aserdjsurIjApryeydsoyd
-() OULISS—OINATS[AIRIP-J (1D

*A19T0UI [0I90AT3 91} JO g)) IR POYLIdISO
ST proe A313e] puodas e orgm ur siseyjuisorq prdrjoydsoyd osou op ur dojs puosss o) St ST [,

oseIoJsueRIj[AOR
-0 oreydsoyd-g-10100A[3[Loe-T

‘urejo1d I0suas
OreN-oydsoyd Aq pajejdroydsoyd st JreN I0jendol osuodsal 91L19TU /0JRIJIU UOTJORAI SII) U]

NXH-OJUVN

‘O 07 10samdaad e st oyeydsoyd-g-osourqere
-q eyeydsoyd-g-esonqui-(q pue ajeydsoyd-g-esourqere-(J SIIOAUODISIUI UOIOBAI SIYJ,

oseIou
-ost  ogerydsoyd-g-esourqery

‘I[09°F] JO SURIQUIDUI I9INO O UI
vV prdiprdijooA[s perejLroydsoyd oy JO SISSUIUASOI] S} UI UOIPORAI onbrun 3sI1y o) ST SIY T,

9SBI9JSURIADR-()
oururesoon[s[L1e0e-N-JdN
—[ureyord-1atired-[Aoe]-[A0y

‘spidijoydsoyd
OIpIOR 91} JO SISOJUASOIq oY} Ul dols pojjrumod o) St pue jurod youeIq © 38 SI UOIJORI SIY T,

aserajsueIjApryeydsoyd
-¢ ayeydsoyd-¢-1010043
—[0I00ATB[ADRIP-J (1D

0ANH00Y WO} A[I09IIp

pordod are suondiIosd(] 'RF 9INSL Ul SUOIDRII paxIew-on(g g0 9[qRL

www.manaraa.com



124

"auRIqUIDWI
IoUuUl 9} 0} SOZI[RIO] OSRUSSOIPATOD 9SOON[S J[IYM SUOI)IPUOD [RIIFO[OISAYd UIeIsd Iopun
QURIQUIOW I9INO0 9T} M PIIRIDOSSR ST 9SRUISOIPAYOP IeSNs 9SOp[y Ureyd jiodsuri) uoI}
-09[0 9} 09 SIRINS 3sOp[e paje[Aroydsoyd-uou a7} WOIJ SUOI)IS[S JO I8JSURI) ST} UT POAJOAU]

ououmb
FoutjournbojorrAdoseusS0IpATPp
95001 [X)

Arewrwuns oN

9se[Op[e QUIUOAIY T,

Arewrmns oN

SEIAE)
-sueljjAoe juopuadep-[urejord
-IaLLIRD-[ADR] (K090 T Rd

Arewrmuns oN

oseIgJsurIlAoR-)-T dreydsoyd
-¢-[0I0A3-Us: DY -[Aoe

‘gdwo pue Hdwo seusd uriod ouriquIdW oY) JO UOIldLIoS
-rexy seje[ngal yduw() ‘zauy oserojsueijoqdsoyd-oseury| 10suss AjLre[owso woay uore[Lioyds
-oydsuery £q peayerAroydsoyd st ydur() urejord L10yemsor reuorjdiosuery o) UOIORII SIYY UT

NXH-HdINO

Arewrmuns oN

L76-ONXH

Arewrmuns oN

oseIamIOST[Uuta)0Id
-I9LLIRD-[ADR]-[AOURD0P-g -SUD.A]

“x1eN-oydsoyd esersgsuerjoydsoyd-oseury 1osuss o) Aq pajeidroyd
-soyd st JIeN I0je[nSal osuodsal 9)1I31U /0)RINUL)LIIU PUR 9)RINU [)0q Jo aouasald o1} uf

NXYU-XdHVN

"OUISAT JO SISOUIUAS o) Ul
days ogewrynued o) pursjeowIdoUTRIP JO SISOUIUAS o1} ur dogs Jse] pur [YIXIS oY} ST SIYJ,

oserowrdo ojeowrdoururer(]

oUIs01£]) pue aurueeAuoyd
310q Jo SIsotjuisorq o)} ul jutod youelIq 9)eWSLIOYD 9] 199Je dojs sl o) SI UOI}ORAl SIY T,

9SeINU 9)RWSLIOY))

‘s1soruAsolrq surind oaou op oy} ut dojs yySw oy} SI Sy [,

9SBAT 9)RUIDONSO[AUSDY

“38U9] I08UO] JO SULI)XOPOJ[RUL SIZISOYJUAS UOTPORAI SIT T,

@mdm@wmﬁ@mu@ﬂdoﬂimldlﬂ

(ponunuop)) gD dIqRL

www.manaraa.com



125

‘TIOTJRATIOR YOIy O} 9JTOI SATJRILIDYR UR ST SIY, "J-ATLSIY-go1y oselojsuerjoydsoyd
-oseury Josuos Aq peojefLroydsoyd st yory umwjord [013u0d uorjeIrdsel UOIORII SIY) U

NXH-VOUVLIV

“x1eN-oydsoyd esersjsuerjoydsoyd-oseury 1osuss oY) Aq pajejdioyd

-soyd sI JIeN I07e[NSal 9sU0dsal 9)1I91U /9)RINUL)LIIU PUR 9)RINU [I0q Jo 9oussard a1} uf NXU-XJYVN
‘d-sty-youyd esergjsuerjoydsoyd-oseury 1osuss uomgar syeydsoyd Aq poje(Al
-oydsoyd st goyJ urejoxd A1oyengar reuorydirosuer) uomnsgar ajeydsoyd o) UOroeal SIy) up NXY-Y90Hd

‘anpisal ajejredse ue o)
C6TH onpIsal sUIPI)SIY o) WO pairsjsuery st dnoid [Aroydsoyd o1, ‘uoryejLioydsoydsuery
TR[NOS[OTRIUT S90SIOpUN oIy oserojsurIjoydsoyd-oseurs] IOSUos oY) UOI}OedI SIY) UJ

NXHU-SNVHLAOYV

‘urejoxd I0suos
bOreN-oydsoyd Aq payejAroydsoyd st JIeN I0e[n3a1 osuodsal 9)1I)IU/9JRIJIU UOIJORAI ST} U]

NXY-OJdYVN

‘d-S1Y-DoI)) eserosuerjordsord-oseury I0suss o) A PajelAl
-oydsoyd st goyd umjord Arojendar reuorjdumosuer) uomsst ayeydsoyd o) uorora SIyy Uy

NXYH-DHYDIOHd

‘urejo1d 10suss {)IeN
-oydsoud o1y £q pejeLiotdsoyd st JreN 101e[N3ol osUOdSal 991U /0)RINIU UOTIORDI ST[) U]

NXY-OTUVN

*0ADH00H WOIJ A[J00I1Ip

pordoo oxe suor)dridso(] ([ § oINS Ul SUOIDRII PoyIRW-on(yg ¢ ) 9[qR],

www.manharaa.com




126

Jue)xe owos 0} uorjejAroydsoyd yreN urejoid Iosues o)
SULI)UNO0D SUOI}IPUOD 981} Iopun asejeydsoyd TreN-oydsoyd ® se sjoe YIeN upjold 10suss
oy, "OreN-oydsoyd Aq Aquo pojerAroydsoyd st urejoxd rpIeN oY) 9)LIIU JO 9oussard o) uf
'$103d000® UOII9[O SB ILIYIU IO 9JRIIU OIS JO UOTIRZI[IIN 01 UOI)RIIASOI OIOIORUR [OIIMS
suorjor jog -uordrrosuer) osejonpal ojerewiny jo rossordol pue uordiIosuri) oseIONpPoI
9)LIJTU PUR 9)RIJIU JO IOJRAIJOR UR [J0(Q sk 10r ued TIeN-oydsoyd ojels pajesnoe siyj uf
‘BreN-oydsoyd pue YreN-oydsoyd seserojsuerjordsoyd-oseury| I0SUss 9)LI1ITU /0JRIIIU [0
Aq peyerAroydsord aq ued TIeN I0JR[NFI 9sU0AST 9ILINU /2RI 81} 3RIIU JO douesald a1}
uy -osejeydsoyd ren-oydsoyd e se Surjoe yieN urejold Iosues oy} [jm pojejAioydsoyd
-op SI umejord rpIRN OYIRILINU JO 9ouasald oY) ul ~YIrN oseiojsurijoydsoyd-oseury IOSuos
o)) Aq paje[Aroydsoyd st rTreN I0je[NGol osuodsol 9)LI)IU /ojeIjIuajRIIIU JO 90UasaId oY) uf

NXU-XTHVN

‘uorjye[Aroyds
-oydsuer) IR[NOSOUIRIUT S90FIDPUN OIY oseIojsurIjoydsoyd-oseury| I0Suas UOT0RAI ST} U]

NXYH-LT1.d04UV

‘Jd-S1y-DeI1)) osersjsurijoydsoyd-oseury
Josues Aq pojejAioydsoyd st gox) umejord Arojenser euornydiiosuer) oy} UOIORAI SIY) U]

NXYH-dH4D

Arewwuns oN

oskWooRI JUIUR]Y

"UOTJRATIOR YOIy O} 9INOI SATJRILISR UR ST SIY ], "Ue)0Id J-76gSTY-go1y oselsjsuerjoydsoyd
-oseury Josues o) £q pajeAroydsoyd st yory urjolrd [o1yuod uorjeiidsar o) UOI)oRal SIYY) Uy

NXY-VOdV

(ponunuop) €D d[qRL,

www.manaraa.com



127

A9 w00 a0l

“e)ep 9} wolJ soqolid paqinitad Suryoa[es 10J S107J

aneno A9 (anues suisod

R o0 suyod

gD omSLg

aueno Aglanues sisod

ooo0sz 00000z

0z szo wzo sio oo 00 o1 0 50 +0 z0 0o o 2o oo 500 00 +00 0o 0o 50 ¥o z0 oo
o 00000 © 5000y FE FE B ° o wo o re
2c, - - (Y
L o= L o= L =
g g o =g
+ + ° o
5 g 5 g 8 §
2 2 8 9
g g L) [8 & g
g i 0, e 8 ® 8 3 %
3 =3 =3 < rs s °
b4 .8 > | . & % )
o / g
010D FASOJ LB} 131EID ADUNM $3901d 0 SIONUOD SANSO] UBYY 111D AD UM $3001d SI611UGD 2SO UBY} 191ER1D AD UM S3004d 1D 010D FANSO] UBY} 121EAID AD UM £3001d
i “weno ey aweno
o008 aoor o00e o0z o001 o1 0 50 +0 z0 0o ooz o5t oot o5 o o1 &0 50 ¥o z0 oo
L2 o L2 o o
a9 s 2 o 2
8 e e “ ° °
o | o | o FE o

AD101USD sAMSOd PalIos 18

ssluenD A2 B1UOD SANISOd 'Y

ADI01UOS sANSOd PaUISS '8

SSUEND AD (OO SANSOY 1Y

oo000h  0000S

00005 |

800S00 t00 200 000

oo

a0 suysod =< A0 Uk sagd &

)
2

www.manharaa.com




128

oUBRIQUIOW | F0SZ | L | €96 | 9 | G-HIS6IST | ¢-HI90S'T | 0C09T
jred oueIqUIOW | F0GT | L | 9F9 | G | ¢-HS6IST | ¢-H969F T | STHi¥
OUBIUISW 0 DISULIPUL | F0SZ | L | 9GS | € | ¢HEVLY ¥ | €-HTLSY L | ¥ETle
oueIqUIOW 0} [RISIUL | F0GE | L | 0£G | G | ¢-HEVLY'F | €-HPS86°C | 13097
queuodwo)) Je[nie)d
Ay1anoe osenomyoeredAjod | 169G | 61 | 0T | ¢ | €-HGLGS'S | F-HLL99T | 0S9F
spuoq [£8004[8 U0 Surjoe ‘A}1A10R 9SBIOIPAY | 469G | 6T | 69T | 9 | F-HTI9LEE | G-HLLEE'T | 86491
spunoduod [£s004[3-() SurzA[oIpAY ‘A3a1ide 9se[OIPAY | 169G | 6T | L9T | 9 | P-HT9LE'E | G-HAVOPT'T | €SST
uorjoun JIe[NOS[OJAl
ssoo01d drjoqROU 9YRIPATOqIRd | 6L | €C | 9G€ | L | G-AFT09°G | €-H6ETIST | GL6S
prodsuery pudi[ | 647% | €2 | S€ | ¥ | €-HGEPS'T | G-HEI6VC | 6989
] olz| == 8 7 Q
a 5| & = | = 5 < o
) 5 3 no|; =8 —
s >l =z 5 |F 7 & O
o] 0 9] <
= <l 3| 2|8 g
= gla| E|E :
@ N S | =
@ og )
< |8
&

ssed041J [edrsojorg

T Ioysn[) :uorjejouny pojusseidorron() §'0) o[qRI,

S
S}
(&)
o
o
®
c
)
€




129

"SOATYRALIOP ouedordooAd oY) 0} sureyod [Aoe A1)e]
pojeInjesUN JO (dUIUOIYIoW-T-[ASOUspe-g Sulsn) uoljeus[Ayjow ysnory) srederiq prdroyd
-soyd jo suretp (4o oY} JO UOTIROYIPOUL ® SozATR)eD 9seIUAS (Y1) poe A39e] ourdordopA))

SISO JUASOIq
(VD) proe £3yey ouedoido(oLd

‘speat] oIIydoIpAY Iy sk s1esns aavy yorym sprdi] sueIquow ureuwr o) o1e (sprdrjooA[s)
SOPLISDATS[ASOOAS Pea)su] JuenjIIsuod IoUulll ® se soplieoA[goydsoyd sey A[uo ouerquiowt
(3serdooqyo Surpnpout) pryserd juerd oyj IseIjuod uy ‘speoy OIIydoIpAy Iy se ojeydsord
OART] UPIYM dInjeu ul punoj spidip euriquowt Iolew ore (spidrjordsoyd) sepriooA[doydsoyJ

stsoyjudsorq prdiooA[3

‘Jrosy1 uodoyyed oYy 10 jueld pestwrorduiod 9y} WOIJ 9 Ued Yorym
JO UISLIO 91} SOSBPISOON[3-¢ JO UOIOR 9} AQ Poses[ol A[[ROIJRWAZUS SI SUOIA[SR OIXO0) 9T,
"ULIOJ 9PISOON[3-(T-§/-() - I1o) Ul syue[d Ul poIojs Punoj A[[eIoUs3 o1e PUL dIX0J0INe S8 SULIO]
QUOOASR O], "S100SUI pue suoFoyjed Jo oFuel opim & jsurede sjue[d JO 9SUSJOP O} Ul POAJOAUL
9 07 porrodel uva( VAR SULIO] SUODA[SE Io1) A[re[nornred pue Spoe OTWERXOIPAY IT[DA))

uory
-epRISOp oPISOON[3-YOIINIA

syuerd ur sessodoad orjoqejowt
IO} o[qe[reAr AJIpeoI IB3NS OPIJO9[ONU POjeAI}OR Snojmbiqn ue ST yorym A}IAIjOR [RLIR[RUII)
-ue ss9ss0d 0} PaYRIJSUOWDP USDQ SBY UINI "9 TOPISOUIII SII PUR SPISOUUIRTI-C-UI}0DIoN{)
"UOTLIJNU PUR SUIDIPOW URWINY Ul Pojlo[dxo usa(q oaRy Jer) (A}1A10R dAljepIXOIjUR “3°9)
seryrodoad [eorgojooeurreyd SUIISSIOIUL [RISADS SR UIINY A[TUIR] 9B9ORUOSA[OJ 93 Ul PUNO]
A[reroadse wooq sey pue wopsury jued oy} ur peardsopim ST Jet) 9pISOON[3 [OUOAR © ST UINY

SISOUIUASOI( UIJTLI

‘syuerd [re Jo sqrem ([0 Arewrtad utr punoj urgoad oy Jo
mueoIad ()9 01 dn 10 sjuUN0OOe YHH "POYLIO)SO [Ajou o1e sANOIS [AX0qIed 9} JO oWOS YOIYM
Ul SONpISal PIoR OIUOINIOR[RS-([- POYUI[-f;] JO UlRYD Ieaul] ® SI (YHH) URUOIN}OR[RSOWOH

uornep
-RISOP puR SISOJUASOIq YHH

2£0yejoN woay uorydrIoso(]

feayyed o4DMIA ||

‘uon
-D9110D TUUOLIBJUOE [IIM [9AS] 9OUSPYUOD UGG 9} J8 PIJRUTUILID

-SI(] "SouRS T I99SN[)) WO} MO UYSIY Yam sAemyied 10sse0ong G0 9[qRT,

www.manaraa.com



130

s10uop Jo dnois oxo 10 SpAYIP[R 9} UO SUIOR ‘AY}AIOR OSRIONPAIOPIXO | L69C | 9¢ | LT | © | CHC6VL'6 | T-HIFEST | €069T
AJ1AT3OR OSRIONPOIOPIXO | 169G | 9€ | TT9 | 6 | C-HS6¥L6 | CHLSIT'T | 16¥91
Surputq NINAJ | L69S | 9¢ | €2 | ¢ | ¢HEPT6'S | €HLLE06 | TSTOT
J01dsooe se JQVN 10 AVN
‘s1ouop jo dnois oxo 10 opAyep[e oY} UO Suror ‘A}IATIOR 9SRIONPIIOPIXO | LG9S | 9¢ | T¢ | ¢ | C-HICESS | €609 L | 02991
Ayranpoe 1oyensor uonpdrosuery | 169S | 9¢ | 642 | 9 | C-HTEES'S | €HLEGES L | 8TSOE
Surpurq 10300500 | L69G | 9¢ | €6 | 9 | C-HG9ETL | €-HO008CF | LLOST
Ayangoe dossoxdor uonydrosuedy | 169G | 9¢ | ¢T | ¢ | T-HSEIST | €HLCOVT | $9S9T
Surpurq owAzue0d | 169G | 9¢ | G6T | 9 | ¢HELETS | €-H96TT T | $990S
Aanoe (Suryerdroydsoyd) eseusdorpAyep oreydsoyd-g-opAyoprerods[s | L69¢ | 9¢ V| ¢| €He6eT6 | T-HCIIST | S9eh
£y1a130€ 98eUSS0IPAYRD oeydsoyd-¢-opAYopRINdAIS | L69C | 9€ V| ¢| €Hdg6eT6 | T-HACIISCT | €768
QOSU-.:,_G._“ hﬁ—ﬁU@TUE
AB1ou0 pue sejjoqejowt 108indo1d Jo UoIRIDUAS | 6LFF | TF | SOT | 0T | L-HA90L9°L | $-H¥ZCIC | T609
uorjoear Y3 ‘sisoyyudsotoyqd | 6L%F | 1% | ¥¢ | OT | FI-AFCSS'S | CT-HS69Z°C | #8961
surysearey s ‘sisoyjudsojoyd | 6LFF | TF | 8T | 0T | GT-HFLLO'E | LT-HC09Z'C | G9L6
sisoqjudsojoyd | 6L%% | TF | 8S | #T | CT-HLSICC | LT-HLE6S T | 6L6ST
w o|l¥r| @ E 8 v Q
2| Elg| 7% : g °
D .OI. p —e e d m =
s S| £ B | B _ & w
e 13| o = g
S| w|f&| 2% =3
= IS w o, Is) @)
@ N o =
) 0] wn
< | &
=

ss@001J [edrsojorg

¢ I0Isn[) :uorjejouny pojussaidolron() 97 9[qel,

www.manaraa.com



131

wse[dofd | 06T | 6¢ | LSL | PT | GHO066S°6 | C-HISKO'E | LELS

O[[oUeSIO | F0ST | 6C | 09TT | 61 | &-H066S6 | G-HSVLS'C | 9GTEY

o[[oueSIO IRN[PIRIIUL | F0GE | 6G | 09TT | 61 | ¢-H066S6 | CHASTLSC | 65CLY
103U uorjoeal T wvysdsojoyd | $0GZ | 6¢ ¢| T | THLEVY6 | THEE0E'T | 8E€S6
QURIqUIdMI | F0GZ | 6 | €96 | LT | C-HLEVY'6 | GHSLET'C | 0209T

jred orwserdojAd | 506z | 6 | ¥GS | FT | €-HS90T'S | E€-HSISS'T | FIFvy

O[[oUBSIO PIPUNOQ-OURIQUIAM IR[N[[9IRIIL | F0GZ | 6G | T€8 | 8T | €-HEETV'L | €-HLG9CT | 1€CEY
11 wayshsoroyd | $05¢ | 68 GT | €| €H9.86°¢ | V-HLI6LG | €TS6

O[[OUBSIO POPUNOQ-OURIqUIOW | F0CT | 6 | 988 | 6T | €-HAFLSO'E | T-HGRCLE | LTTET
oueiquowt dryeyIussotoyd | F0Sg | 6 9¢ | ¥ | €HS998°T | ¥-HOTER'T | LGEVE
woysdsojoyd | 06z | 65 e | V| €WPLSTT | G-H800Z°6 | 0600€

yserdoror | $0G% | 68 0G| @1 | ST-AT8LE'T | PI-HGCCL'9 | L0S6

puserd | 705z | 6¢ 0S| @1 | ST-AT8LE'T | ¥I-HGCCL'9 | 9E£S56

juaouodwo)) Je[nipE)d

(ponuruop) 9D A[qRL,

www.manharaa.com




132

“e11990€( d1ydoIjoine
Auew pue sjyue[d uools ul [[e ul punoj Aemyjed uoryexy ¢ Ioleur oy} SI 9[0Ad UIA[R)) O],

904D urRyssR-UoSU-UIATR))

"$9JRIISqNS UOQIRD IRSNS-UOU WOIJ 9SON[S JO UOIJRIDUIS O[] ST SISOUSZ09U0IN]L)

SISOURS00UO0IN [

Arewrwuns oN

SISOJUASOI( SUIIA[S

sjued ur pesn os[e
ST pue )02 & JO [[IMOI3 10j ASIoU pUR UOJIRD JO 9DINOS [RI0}) © SR 9AIOS URD 9SOUURWI-(]

UOI}RPRISOP 9SOUURUI-(]

"SSO[OYJoUOU pajR[AI-ASIoUe JNq ‘DADIIIA Ul UOorOIpaId-sTur Y

(reryred)
Kemyjed ogeydsoyd osojuad

"Ssa[}
-uAso1q I0J pOpPoau Os[e ST YPIYM HJ(VN JO 021nos jueriodur ue st Aemyjyed SIy) UOTYIPPeR U]
"TUST[ORIDW [RITUDD JO sAemyjjed [RI1IU0SSO 9011} o) JO ouo st Aemyjed ajyeydsoyd osojuod oy T,

(youreaq oATyRpIXO-UOU)
Kemrpped ogeydsoyd esojued

"IOPO I9qUINOND 9} Sk yonssjue[d 03 sojse) pue SIOARH oY} 9ALS TJH-€T Aq poonpoid
S[oyoo[R puR SopAYPpPIe oy, -syur[d AurwW Ul Pojddlep ULRq seY AAlOe TJH-€1 PR
otuowse[ suourioy jued oY) JO SISOUIUASOL] oY) Ul jurjrodur ST YOIYM SXOT-ET I SXO'T
pattodar gsour squed uy A[oA1300ds01sopIx010dOIPAY-¢T pue soprxoIodoIpAY-G 0} SpIoe A3ey
poreinjesun Ajod SuriioAuod XOT-€1 PUe XOT-6 S€ POYISSeD IoylIny oIe Ad1) So1jroyroods
reuoryisod o) wo Surpuado( sejoArenNe Ul sewAzus snojymbiqn oxe (Y ()) seseusdAxodr

Kemyyed TIH-CT pue XOT-CT

‘(sowdzue ose[ojeysuel) pue Surduerreal oyeydoydsiq-esojoniy pue syeydoyd
esonqrl suowrwod) Aemyjed sjeydsoyd osojuad o) YIIM UOIPORISIUI SIT 0F SNP DADIIIA UT
Ppojorpaxd-stin oq JYSIUL SIY, “SSO[OYIOUOU PAYR[AI-ASIOUS N ‘DADIJIA UL UOIPOTpaId-sTul

(91045 su0300RAXOIPAYID)
[II UOIje[IWIISSE OPAYOP[RULIO]

"SSO[OYJOUOU PAYR[OI-ASIaUS JNq ‘DADIITA Ul UoroIpaId-stur y

(e8ojounIoy T,) T]T SISAOOA]S

‘oueIqUIoUL
[RLIPUOTDO)IUL ISUUIL ST} SSOID JOUURD J[OSIT IV N 9SNRISQUOLIPUOYDO)TUL 9} OJUT SISA[0OATS
Aq peonpoid HVN Ol[0S0JAD WOIJ SUOIJIS[O IQJSURI) 0] PISN SWSIURYDISDW S[JINYS [RIDASS JO
QUO ST 1] "OURIQUISW [RLIPUOYDIOIIUL S} SSOIOR SJUd[RAINDe Suronpel SurLiejsuel) seoeds oru
-se[dojAd pue [errpuoydojtw o7} surds Aemyjed Sy, "o[1INys ojejredse-oje[eul 9[(ISIOADI o)}
J0 11ed se 9je[RUL 01 POLISATO0D SI 9jriIedseuorjeprISep ajelredse JO 93N0I O1j0ATIe NS ST} U]

I uoryepeissp ojelredse

‘uoryeardsor surpeny Aemyjed jueurmwopatd oy} ST SISA[00ATS sjuerd uy

AT ‘TI ‘T SISAT00A[3

“UOTJODI
-100 TUUOLIDJUOE JNOTIIM [9AD] 9OUSPYUOD UGG O3 18 POJRUIUILID

-S[(] 'seua8 ¢ I9ISN[) WO} MO YSIY Ypm shemryed 10ss000nG L) 9[qRL,

www.manaraa.com



133

oInjonys Jurpensdeous [RUIIXD | FOGZ | LT | T€ | T | ¢-HSSE9L | ¢-HVLEL'T | CIL0E
[rem [[@d | ¥06¢ | LT | 1€ | € | ¢-HSSE9’L | ¢-AVL6LT | 819¢
jred ouerquiowt | $0Gg | LT | 9F9 | 6 | ¢-HSSL9L | ¢-HISGF T | STHiT
seidode | y0Sg | LT | TG | €| G-HOVWL'S | €-HILFP'S | 9F08F
oueIquoW | FOGZ | LT | €96 | ¢T | ¢-HO¥FL'S | €-H6661°L | 02091
QURIqUIOW 0} JISULIYUL | F0GZ | LT | 9GS | 6 | ¢-HOFFL'S | €-HE60E'S | ¥4TIE
UOISAI IRN[OORIIXD | F0GT | LT | 6% | € | ¢HOPFL'S | €HI6V6'S | 916G
QURIQUIAUI 0} [RISOYUT | F0GT | LT | 085 | 6 | ¢-HOFPL'C | €-HG99L°€¢ | TT09T
yuouodwo)) Jenje)
Ay1an)oe oseuedAXOIp | 169G | GF | €1 | G | ¢-H9LTL'S | €-HETE6'E | £TCTS
TS AX0
wo suroje omj wo Eoﬁﬁhogwooﬁﬁ ‘U8 AXO HﬂSUEOS wo QOEQHOQ
-100UT [}IM SIOUOP O[SUIS UO JUIOR ‘AJAIIOR 9SRIONPOIOPIXO | 169G | ¢F | TT | T | ¢-dASFILL | €-HIS6LT | ¢0LIT
USSAXO0 Ie[nod[ow Jo uoryeiod
-I00UT [JIM SIOUOP O[SUIS U0 JUI}OR ‘AJATIOR 9SBIONPOIOPIXO | 169G | ¢F | TT | T | ¢-dASFILL | €-HIS6LC | TOLIT
Aytanpor oseyeydsoyd poe | 169G | ¢ | OT | ¢ | ¢-dASF9L L | €-HIO0ET | €66€
Ay1argore oseuodAxodry | 269G | ¢F 6| ¢ | CHSYILL | €HLSFRT | 9191
= ol 2| E|E 8 b Q
2 Elz| &8 = 5 @
m p p il T“. Lo = v_l._
o S| g B | B _ = )
= oo 2 <
s < | 8| 8|2 =2
| gle| E|E :
@ U o =
¢} 0Q 0
<8
@

uorjounyj Ienod[oJ

G I9)sn[)) :uorjejouuy pojussardolron() g 9[qR],

www.manaraa.com



134

"SS9
-9[[JoUOU PAJR[DI-ASIOUD NG ‘DADIIIA UL SUOIIOIPaId-SI[\ ‘UOIjRjUSULID} ojeAnIAd [RLIOjOR(

uorjepeI3ap
puR  SISOUJUASOI( [OIpauRIN(

‘stsopuAsojoyd jo jonpoid urewr oy} se [031qI0s osn yoiym syuerd asory jo
yuowrdoeaep 9y Surmp uoqres surAjddns ur ofo1 juejroduwr ue sAed pue [031q10S JO UOTJRZI]
-IJ11 OT[ORIDUL O} 10 SUWIAZUS A3 € ST (DIYM ISRUISOIPAYP [031q108 Juopuadop-, (YN ®© v
9SOJOTLI] 0} PILISATUOD A[[RNIUSAD PUR SONSSI) JINLIJ UL  POPRO[UN, ST [031(I0S POIRIO[SURI} O],
‘spuerd IOYSIY Ul punoj s[oyoore Iesns 10 S[oA[od OI[04£0€ [RISADS JO QUOJONXIY ® SI [031(I0S

] uoryepeIsap [031qI0S

"SSO[OYJOUOU POIR[OI-ASIoUD JNq ‘DOADIIIA UL UOIOIpaId-sTl Y

(reryred)
Kemyjed ofeydsoyd osojuad

"S9s91[)
-UASO01q JI0J PapPaau Os[e ST IPIYM HJ (VN JO 001nos juejrodur ue st LAemyjed Si) Uoippe ug
"TST[ORIDW [RITUDD JO sAemyjjed [RI1IU8SS0 9911} 9] JO ou0 st Aemyjed ajeydsoyd osojuod oy T,

(youeaq eATyRpIXO-UOU)
Lemyjed ogeydsoyd osojuad

"IOPO I9qUINOND o1} sk yonssyue[d 03 sojse) pue sIoARl oY) 9AI8 TJH-¢T Aq peonpoad
s[oyoore pue sopAyepre oy, ‘sjue[d AurW UI Po3dojop Uaaq sey AJA1De TJH-ST Po®
oruowse[ suourtoy jueld oY) JO SISOYIUASOIq oY) Ul jueiiodwur st yotgm SYOT-ET oI sYXOT
pojrodai gsowr syue[d uf “AeAroadsorsopixolodoIpAY-¢] pur soprxolodoIpAl-G 03 spioe A})e]
pojeinjesun Ajod SuIlIeAuod X(O)'I-¢T PuU® X(O'T-6 Se PoyIsse[d Ioyinj ole A9y} soljoyroads
reuorjisod oy) wo Surpuade(] sej0Arene Ul sewdzue snojymbiqn oxe (Y ()) seseusdAxodr

Lemyqred TJH-ET PU® XOT-€T

ory
-091I09 MQQO.H.HOMQOMH QQEP ~®>®~ @OQ@@MQOU &m@ @Qp e U@ﬁwﬁﬂago

-SI(] 'seua8 ¢ I9)SN[) WO} MO YSIY Ypm shemrjyed 108s000NG 6 9[qRL

www.manaraa.com



135

‘oprxo1od ueS0IpAY so8uoArIS 9[DAD oUOIYIRIN[3-0)e(I0ISk
oY, -uonounj [[09 oy} JdnImIUI SNy} pue SOWAZUO Uredd pue spidif ouelquow oSeuep
urd 9prxorod UOSOIPAY pue USAXO UOJ[SUIS O1X0) O], ‘oprxorod USSOIPAY pue USAXO
u0)o[3Uls sk Yons soroads ue3Ax0 daA110R 9jeIousd (uorpelidserojord ur 99e[0dA[3 JO UOTYRPIXO
pue jI1odsuer) woIjdafe odijejulsojoyd ‘uorjeridser Surpnpour) sesseooid odrjoqejonn AuRIy

904D suonpeIN[3 9)eqI0ISE

"OATIOR AT[ROIJATRIRD OUWI0D9(
0} surewiop (J)V) U10j01d-I9LLIed-[Ad% JUaNIIISU0d I19Y) JO UOIJRIYIPOUW [RUOIYR[SURI}-1sOd
axmbar sosejuAs opryded [RWOSO(LI-UOU PUR SOSRYIUAS Proe-A1je] ‘soseiuds opreyAjod [y

wisIjoqe)ou
urejoxd JorLIed [Aoe

‘ureqns pue ‘xem ‘spidi] o8e10)s poos ‘Spidi] oURIQUISW JO SISOYJUASOI( [} Ul POAJOAUT
are Aoy syuerd uy sjueuodurod pue syonpoid Ie[n{Ed AueW JO SISSJUASOI] 9} UI PIsn dIe
SYO0)-TA0Y "YO0O-[Aok UE JO WIIO] POYRATIOR O} UI [[99 9Y} Ul PUNOJ U0 9Ie SPIOe A}jeq

SISATOIPAY YO)-[Aow

‘SpUR[3 WNIqoW puR WNJoS
uryim uoronpoid Xem 9} Ul POAJOAUT SI S[RWTIRW Ul POYIIUuep! odA} PIIy) Y "STOI}0IR0IED
I010RqOUDY Ul Pognuopl sem Aemrjed SI) Ul poqLIdsop odA) puodes e ‘pury 1sIy oY) oIe
eqolof oIy sosejuAs Xem O} ‘POYIIUOPI U9 dARY sod A} 1OUTISIP 9I) SOSRIDJSURII[ADR O}
A(remoryred soWAZUD PaYe[oIUN JO S30S Aq MO PaLLIed 9q 03 sieadde SISOIUASOIq 19759 XBA\

IT SISOUIUASOI( SI9)S9 Xem

"UWOGAXO JO oyeldn Iepun SLIRS[NA R UL SUIURAIRIO(
JO UMOpP¥RSI( PUR UOIJRIO[OISIP SOSNR) "UMOUNUN AUSIY SUMRWSI UOIIRPRIZOP 1D} pue
sole[[AydoAIR)) JO IoPIO S} Ul A[PAISTI[OX0 JSOUI[R INDD0 PURFEEG-A M HINV HA09ssureriaq
o) JO ssepqns B OIREEEG-A MIHINVYL 8osutueioeioq pol 03 O[0IA Oy,

UOIRPRISOP UIPIUR)IQ

"S$SOI3S O110Iq® puR O1101q 0}
9su0dsoal [RIOUAS © Sk POULIO] ST 41 019U M soAljejuasardor owitid oY) se snulJ PUe s1yonLy S1LA
UM erouod que[d Jo Idqunu pojoLIsal ® ur paonpold [ousydA[od 1olfeur oy} ST [0I)RISASIY

SISOUJUASOI(] [OI)RIIASIT

“UO01109110D
TIUOLISJUOE JNOYIIM [9A3] 2OUSPYUOD %66 ) 18 PIJRUIUILID

-SI(] "SOUSF 9 I9IS[)) WO} MOF UYSIY Ypm sAemyied 10ss000nG ([0 9[RBT

www.manaraa.com



136

prodsuery pidi | 6LFF | 8% | G€ | € | ¢-HC96TF | £-HIFF6S | 6989
sseooad orjoqejowt prouedoxdiduoyd | 6.5% | 8F | TT | ¢ | ¢-dC96TF | £-HEIIS'S | 8696
stsouadolq pue uoryeziuedio [rem [[90 odAy-juerd | GLFF | 8F L | T|CH65C8T | £-HVIRTT | 1996
wﬁwwgwwoﬂﬂ UQ@ QOﬂ@NﬁH@mMO oINnjonajis wgﬁHﬂSmQ@UQ@ ﬂmﬁu@ﬁm@ @Nwﬂ wﬂ ﬁ@ m mumwwﬁw.ﬁ ﬂ-@@mmﬂ.m @NN@%
SISOUQSO0I( pUR UOIRZIURSIO [[RM [[90 | 6LFF | 8% | #9 | G | €HSSTIT | #-HILCHFS | LFOL
UOIJRZIURSIO Jrungns xo[dwod Ie[noojowomew | L%y | 8% | 0FT | 6 | #~HOS0E'T | S-H080S'T | £865F
SISOUOZ0I] pUR UONJRZIULSIO J[[PUSIO | GLFF | 8F | 89T | 0T | G-HEGSL'S | 9-HLSZ0'8 | 9669
Aqurosse xo[duod IR[NIS[OWOIRU | GLFF | 8F | 6T | 6 | G-HS0T0'S | 9-HLE89°9 | £00S9
SISOUOS0I( pue UorjezIuesIo juouoduod IRN{Pd | 6LFF | 8% | GLZ | ST | 9-AFFCO'T | S-HES06'L | €F09T
SISOUOS0I] PUR UOIJRZIURSIO SWOSOWOID | GLFF | 8F | SG9 | 6 | L-HSC09°C | S-HA6SEL'T | T00L
Apquuesse xorduwoo yN-uwjoxd | 6L7F | 8% | €9 | 6 | L-HSRETC | S-HASSOLT | #0059
9IM1097IDIR UNRTOID JO 9OURUSIUIRUI 10 /PUR JUSWYSI[qRISe | 6LFF | 8% | 09 | 6 | L-HG0L9'T | 6-A¥¢Se'S | STe9
Aquuessesip 10 A[quiosse UjewoI | 6LFF | 8% | 87 | 6 | STHIT0SC | 6-HICHOT | €£€9
Aquuosse juouoduod IR | 6LFF | 8% | LV | 6 | 8"AIT0G°C | 0T-HSFES'S | L092C
Aquuesse unyewioyd | 6L5% | 8% | ¥F | 6 | 8 HLSIS'T | OT-H69FS ¥ | L6FIE
Suidesped YN | 6LFF | S¥ | ¥¥ | 6 | STHLSIS'T | OT-H69FST | €¢€9
Arquuosse owosodPNU | GLFF | 8% | IF | 6 | 8-HLSIST | OT-H0T0CC | ¥££9
S o| 2| E|H 8 7 Q
G Elz| ) F : g P
= gl E| B|FE 7 g o
= OS] @n <
| S |z| g|éE g
= 2 S| g g
@ S} o =2
) 09 w0
= | &
@

ssed01 [ed1do[org

), I9IST[)) UOIjRIOUUY POJUSSIIdoIIon()

IT°D 9l9®L

www.manaraa.com



137

uordox renypovyxe | p0gz | 8z | 67 | €| cdA1eees | o-He9e9 T | 9269
snopnu | y0cz | 8z | 689 | €1 | 2-HI189z°¢ | €-H100€9 | ¥£9¢9
S[[PURSIO POPUNO(-DURIIIII-TO TR[N[PRUL | FOST | 8T | 92€ | 0T | @-H0ZST'Z | €-H008¢C | Teeey
d[[PueSI0 papunoq-ourIqUIdBW-UOU | p0CZ | 8z | 92€ | 0T | 2-H0zST'z | £H008EC | 8zzey
yred ofpuesio remypoenur | 0z | 8¢ | 126 | 0T | 2-H028Te | €-AVLST | 99FIY
yred opoweSio | y05z | 8¢ | 12€ | 0T | 2-d02ST'C | e-APPLST | Cabbh
owosowox | 05z | 8z | €9 | 6| S“AI00LL | $-HI690'T | F69G
yred rewosoworpd | 06z [ 82 | SV | 6| 6-HLIS0F | OT-HI6EST | Lahiy
uryewion | y0gz | 8¢ | OF | 6| 6-HEOPLT | OT-HEOSGH'T | LTLG
xordwoo yNa-wosoxd | 05z | 8z | 9¢ | 6 | o1-HC0vz6 | TT-H9EET'S | £66TE
owosoapnu | 70z | 8¢ | 9¢ | 6 | 0T-HS0PZ'6 | TT-H9LETC | 98
QQQQOQEOO Jemira)
[ [[o0 Jo Juonyysuod [emgonnys | 469 | €6 | v | €| pHIGLY'E | 9-HTTT0E | 661G

uorjounyg Ie[nda[oJA

(penunyuop) 17D 9[qeL

www.manharaa.com




138

"sjurerd Jo s[Tem ([0 oY} Ul A[[esIoArun juasaxd ST 9so[nie))

SISOJUASOI( 9SOTN[[9D

‘squerd [re Jo s[rem (@0 Arewrid ur punoj uryoad oY) jo
jueorad ()9 09 dn 10} sjUN0dOR YO POYLIoIS [Ajot o1e sdnoid [AX0qIed a1} JO dWOS DI M

uoryep

Ul SONPISeI plok dIuoINjoR[eS-(J-8 POyUI-f] JO UIRYD Ieaul] & SI (YHH) URUOINIOR[RSOWOY | -eISOp puR SISOIUASOIq YVHH

squerd ur pesn osye
SI pue 2002 “f JO [IMOIS 10J ASIoUo pUR UOCIRD JO 9DINOS [R)0) B SB DAIdS URD 9SOUURUI-(]

UOI)RPRISOP 9SOUURUI-(]

“U011091
-100 TUUOLIBJUOE [IM [9AS] 9OUSPYUOD UGG 9} 18 PIJRUIUILID
-SI(] "SeuaS ), I9sn[)) wolj Mo Y3y [im sAemyied 10sseoong g1 D) O[qRL

www.manharaa.com




139

AYATIOR OSRULIYD | LG9S | T9 91 | T | ¢d¥606'S | ¢-H68CC T | [9SF
Ayanpoe jueprxonue | 1696 | 19 0F | €| ¢d9SEL9 | £-H860L'8 | 60291
Surpurq 10990J00 | 169G | T9 | €6 | 8 | ¢-H9SSTY | £-HETLI'S | LEOST
Supurq | 269G | T9 | 888€ | 1 | ¢-H9S8TF | €-H6E60°C | 88F¢
Surpurq unIyd | L6956 | 19 0T | ¢ | ¢-d9S8C¥ | €-HAFC08T | 1908
Surpurq oprreydoesA[od | 696 | 19 0T | T | ¢{988¢V | €-HdPC0R'¥ | L¥20E
Surpuiq wwgyed | 269G | T9 0T | T | ¢H9S8CT | &-APZ08F | TLST
Surpurq oyeydsoydordd utweryy | L695 | 19 L| ¢| cH06V6C | €H088CT | 9L60€
SpuOoq [AS00A[S U0 Jurjor ‘AYAIJoR OSROIPAY | 169G | 19 | 69T | L | ¢-H.L8C6°C | £-HS6T0C | 86L9T
Ayangoe oseprxorad | L69G | T9 e | €| ¢HL8C6'C | £-HSTIOT | T09F
109deooe se oprxotad WO Jurpor ‘AITATIOR 9SRIONPOIOPIXO | LG9S | 19 e | €| ¢HL8C6'C | £-HSTTOT | #8991
Surpuiq ayeydsoyd rexopridd | 1696 | T9 0S| ¥ | ¢-HL8C6'C | €HLI68'T | 0LT0E
spunodurod [A8004[3-() SUIZA[OIPAY ‘A31A130R OSRIOIPAY | L69G | T9 | 29T | L | ¢-HLST6'C | €-HLOSS'T | €SG¥
£y1a130€ oserdfsueyAAuope opryospnuiiod | 269G | 19 G| T|CHL8C6T | STHLVOT'T | TSo¥
Aytanpor osejdzoydsoyd | 169 | T9 ¢ ¢ |cHO6V6'T | 7-HL09¢°E | SVIT
Surpurq urwrejia | 2695 | 19 29| 9| €HT6VT S | ¢-HTSTS T | CFS6T
Somuoﬂa hﬁ~50®~02
$S013S OAIYRPIXO 01 dosuodsol | 6LFF | 8% e | €] ¢H0vS6'S | £-HS966°T | 6169
Surssoooxd puo-,¢ YN | 6L7F | S G| ¢ | cHSLEVL | €H6T0T'T | €CT1E
uoryeAuopeiiod YNV | 6LFF | SF G| | cHSLEY L | €H6TOT'T | TEOEF
~ o & = | E 8 7 Q
2 2| & g & = g ~
D p p —e — d nI —
s o | g B | B _ a w,
= ] @ © <
=5 < | g S| 2 £,
s z . g1 g g
S| 8| &=
@ 09 w0
<18
=

ssad01d [ed13o[oig

Q I99SN[) :uworjejouuy pojussardorron() €I 9[qel,

www.manaraa.com



140

‘srewntue pue sjyued Surpnpur sejodreyns 1y3sy 01 dn sjseod pur BLIS)ORQND
‘eaRIDIR WO} SUISURI SWSIURSIO SUIAI] 3SOW Ul SPUNodwioo uoqIed pur ASIoUs d[(R[IeAR
ATTpeal JO IT0AT9SOI Jo[ew o) oIr ‘SIOWATOd 9S0ON[S PIZIS-UOI[RPRSOW ‘YoIR)S PUR UISOIA[Y)

SIS
-OYJUASOIq USB0IA[3 puR [DIRIS

‘stsotjuisojoyd jo jonpold urewr oy} se [031qI0S IS YoIYMm syue[d 9soyy Jo
juowrdoreasp Hniy urmp uoqred SurdAjddns ur ojoi1 Juejiodur ue sAe[d pue [031qI0S JO UOTIRZI]
~[H1 OT[ORIDUL O} 10} SUWIAZUS A3 © ST [DIYM 9SRUSOIPAYIP [031q108 juopuadop-, (YN ®© v
9S0JONIJ 0) PIIDATO0D AJ[RNIUSAD PUR SONSSI} JINLIJ UT  POPROTULL, ST [0}ICIOS PIJRIO[SURI) 9 T,
‘squerd IOYSIY Ul PUNO} S[OYOI[R IR3NS 10 S[OA[Od OI[0ADR [RISASS JO QUOO)IXY ® SI [0}1(I0S

[ uorepRIZIP [031(I0S

‘weoA[sopryded ojur
Po1eIOdI0DUL ST POZISOJUAS dUTUR[R [R)0) JO [[JU0Y ® Inoqe A[u() *(ourue[e-7 pue -(] Jo X1 T:¢
Aysnou e se) ueoA[dopryded pue (suruee- se) urejold Jo JueUOdUIOD [RIJUSSSS UR ST SUIUR]Y

I SISOJUASOLIq dUTUR]e

“U019091
-100 TUUOIIOJUOE TIIM [9AD] 9OUIPYUOD UGG O} 18 PIJRUIUILID

-SI(] "SOUSS Q I9)SN[) WO} MOY YSIY Yim sAemired 10ss000ng  FT°0) 9[QRT

www.manharaa.com




141

*S98Po-U0x9
uowmod Aq poyul] sepou-aqold jo syromjou yjm sdiysuorye[ar aqoid 9sot) Po[OPOW 2ARY am “PYSLI 9} U() 99 Y3 U0
UOXe UOuWIod © 3m soqoid (enfq) uwaSeiquuiN pue (pal) XujewAgy jo ojdurexs ue 99§ 'paqimiiad sI uolssaIdxa s U0Xd
oY) oIoUM JoseIRD AUR Ul PJR[OII0D ATUSIY o( P[NOYS A9Y} ‘UOXS SUIRS S1[) dINSROWL S9(0Id OM] JI ([P0 9USF ® Ul SUOXS
uowrmod uo paseq (9qord ueSsquurN ouo pue 9qold XLPWAPY ouo 1) seqoid uojye[d-ssod Jo sired yurp ues om ‘ Ly T
snsuasuod jesoqolrd eia suorysod [ewosowolyd 03 soqoid XrjowApy Surddewn 109y UMOUY dI@ S9WOSOWOIYD d) U0
suoryrsod 1ot} 0s ‘emwousds aurAadeIs 1$9)e[ 9} WOIJ S[OPOW SUSS UO Pase(q PousIsep sem posn urrojje[d UoSo[quIIN oY, € oIn3Lq

.................. e e O e S S S s ke Lo e - »
e 82 LPET T OTAADT
i _ » I »
»’vwm TOETLGETTTOTAMI ELpTLOETTTOTAMIT

saqoid oyMm an BEER

— 4

oy 0T3279/6TZ9T "
2 01 HWHMO 2 —
,vnom SR 2T 9L6TE0T
i s o
s e e PR SL6TI9T
T = 4 4
,.MUU Huoooam TITILETIOT  STIETILETEST
iR G saqoud Yot APV oYM BEE
poeg e |

=5 ShSUASLIOD 18- 9 5T29T
[lipesy 9T ov, o
i €8 ! snsuasuo) J9T AUV BEE
L s : - et S P i U v N v ¥ To3:
[ e e o . ; ‘ : . TToTARIr
BB TS TS S maEe
S e e e ! B = i tn o it 2 H H95EPT ASSERT HAPSERT
B R poe S mEeren o TS e 0T “ “ “
BRe & EEN 1 SIR LA ERE R R i
T T s o P TN TEE
= ot = s e = . A 2 | Logies =l -
= 4 &M«Wo- T TR B e R asm R 2 e o A00PPT  MOGERT  GMOBEPT  MOZEPT  MOSEYT | MOGEMT  OPERT  MOEEPT  MOZEPT  IOTERT
= et HQMMMW =S e o = Erea Eaa A vuwaWnu\hr or ! ! ' ' ' _ﬁt_r_u

= e T t t 7 7 t

WEE WZe WTe WoZ WeT AT AT WAT zmﬁifwﬁ WET WZT WTT WOT W U8 WL W9 WG ke WE W WE WO
: o

www.manharaa.com




1000
|

Pmbs pais
500 800
L

400
1

200

142

Affy or MD perturbed (or both) Both Affy and MD perturbed

300

Pmbs pais
200
.

100
L

Pmbs pais
100 200 300 400 500 600 700
L L L L !

o

05 0.0 05 10 05 0.0 05 10

Comelatian Comelatian

Random probe pairs Empirical Upper-tail P-values for Atfy or MD perturbd pairs

Pmbs pais
1000 2000 3000 4000 5000 6000 7000
. L L . I L )

Mo ————

o
L

Figure C.4
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Distributions of correlations between cross-platform pairs of probes linked by com-
mon exons. We aim to remove Affymetrix probe-genome alignments associated
with poor correlation with exon-linked Nimblegen probes. Top-left shows the his-
togram of cross-platform probe pair correlations where the either the Affymetrix
(” Afty”) probe, Nimblegen ("MD”) probe, or both probes are perturbed in ex-
pression. This appears to be a mixture of two populations: probe pairs with
correlations normally distributed around zero and probe pairs with correlations
approaching one. Top-right shows a histogram of correlations where both probes
are perturbed. Requiring that both are perturbed greatly reduces the popula-
tion of zero-correlated pairs. Bottom-left shows a correlations of randomly se-
lected probe pairs and bottom-right shows a histogram of p-values for the pairs
in top-left, evaluated using the sampling distribution generated for bottom-right.

www.manharaa.com



143

Chip Effects - AMA Chip Effects - AMA, probe length scaled Chip Effects - RMA, level-scaled

Frepency
am
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Reduced Model {expression = photoperiod + day) pvalues - AMA Reduced Model [expression = photoperiod + day) palues - AMA, probe length scales Reduced Model (expression = photoperiad + day} pvalues - AMA, level-scaled

- 2 2 o e

Chip et Chip et Chip et

Figure C.5 After pooling the two platforms, we fit a linear model which accounts for a ”chip
effect.” This chip effect measures the significance of the platform quantification
differences and is non-zero both for RMA and RMA plus probe length scaling (left
and center columns, respectively). However, the chip effect vanishes when we use
level-scaling, and the chip effects are tightly distributed around zero (top-right).
The bottom row shows p-values for each probeset when testing the null hypothesis
that the chip effect equals zero.
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Year Effects Under Different Treatments

Seyval (SV) Riparia (VR) Totals
S-5v S-VR 8
—|
(‘n - -
—_ F g o
= [ & H g
@ i s [
[ 5
= § N 2
=} 7
n| - - L -
T
A 7 4 a 1 E A B 1 n 1 E k3 3 - 1 n 1 E 3
L-5v L-¥it L
7 "
:
iy P = g8
=i i i
— |i
o |t 5
o |& B g -
o T -+ g
|
o w - =l -
— T T T T T T 1 r T T T T 1 r T T T T T 1
4 a 2 o 1 2 3 3 2 1 Q 1 2 3 4 3 2 1 o 1 2 a
sV VR TOTAL
g
w 2 2 2
wn ; E 2
= % ] 8
=}
[ K o =
g § g
= a = i
T T T T T T 1 r T T T T 1 r T T T T T T 1
4 a 2 o 1 2 3 1 2 1 o 1 2 3 4 3 2 1 a 1 2 3
Vaar Eftact ‘faar Effect aar Effact

Figure C.7 Histograms of year effects as calculated by Equation 5.9. The plausibility of two
different populations is most apparent in the bimodal distribution of year effect
under the short day treatment for Seyval (top left). While this strong bimodality

in the short day x Seyval treatment carries through to the totals in the bottom
row and right hand column of histograms, they other joint distributions (S-VR,
L-VR, L-SV) also show a slight skew which may be cause by two very convoluted
distributions.
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Control Probeset Values

T
LS
]
b0

-

RMA normalized florenscence value

Control Probesets

Figure C.8 Boxplots for expression in each hybridization for all control probesets. The 20
selected as positive controls are shown in red. These are the controls used as
expressed references for variability caused by noise.

QQ Plot of Positive Controls
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|

0
|

Sorted Statistical Distances From Mean
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Chisquared Quantile

Figure C.9 The Quantile-Quantile plot checking for multivariate normality in positive con-
trols shows good fit, except for outliers in the tails. Since the quantiles of controls
statistical distance from their centroid line up with the theoretical x? quantiles,
we can assume that the multivariate distribution of noise is multivariate Normal.
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Probesets with Variance Greater than Controls

4000 6000
]

2000

0
L

# Probesets with Variance >= Controls

| | | | | T
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Control Variance Quantile

Figure C.10 As we increase the control percentil cutoff (x-axis), the number of experimental
probesets with variance at least as large (y-axis) decreases. In order to mine only
the probesets perturbed by the treatments, we selected a variance cutoff equal to
the 75t" percentile of the positive control variances, and selected experimental
probesets at least as variable as this, resulting in 1,304 perturbed probesets,
making up 7.9% of the entire set.
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